Contents

Preface .. v

Contributors ... x xi

1 A Comprehensive Movement Compatibility Study for
Hong Kong Chinese .. 1
W.H. Chan and Alan H.S. Chan
1.1 Introduction 1
1.2 Methods 4
 1.2.1 Experimental Design 4
 1.2.2 Subjects 4
1.3 Results and Discussion 4
 1.3.1 Response Preference and Mean Stereotype Strength 4
 1.3.2 Reversibility 7
 1.3.3 Response Time 8
1.4 Conclusion and Recommendations 9
References 10

2 A Study of Comparative Design Satisfaction Between Culture
and Modern Bamboo Chair 13
Vanchai Laemlaksaku and Sittichai Kaewkuekool
2.1 Introduction 13
2.2 Methodology 14
 2.2.1 Design and Fabrication 14
 2.2.2 Sample Selection 17
 2.2.3 Questionnaire 17
2.3 Results 18
 2.3.1 Dimensional Appropriateness of Chair 18
 2.3.2 Comfort Level of Chair 21
2.4 Conclusions

- **2.4.1 Dimensional Appropriateness of the Chair**
- **2.4.2 Comfort Level**
- **2.4.3 Aesthetic Appeal of the Modern Bamboo Chair**

2.5 Recommendations

References

3 Factors Influencing Symbol-Training Effectiveness

Annie W.Y. Ng and Alan H.S. Chan

3.1 Introduction

- **3.2 Factors Influencing Symbol-Training Effectiveness**
 - **3.2.1 Training Method**
 - **3.2.2 Other Training Factors**
- **3.3 Experimental Design and Analysis for Symbol-Training Effectiveness Research**
- **3.4 Conclusion**

References

4 Multiple-Colony Ant Algorithm with Forward–Backward Scheduling Approach for Job-Shop Scheduling Problem

Apinanthana Udomsakdigool and Voratas Kachitvichyanukul

4.1 Introduction

- **4.2 Problem Definition and Graph-Based Representation**
 - **4.2.1 Problem Definition**
 - **4.2.2 Graph-Based Representation**
 - **4.2.3 The General Concept of ACO Algorithm**
 - **4.2.4 Memory Requirement for Ant and Colony**
 - **4.2.5 Hierarchical Cooperation in Multiple Colonies**
 - **4.2.6 Backward Scheduling Approach**
- **4.3 Description of Algorithm**
 - **4.3.1 Initialize Pheromone and Parameter Setting**
 - **4.3.2 Local Improvement**
 - **4.3.3 Pheromone Updating**
 - **4.3.4 Restart Process**
- **4.4 Experimental Results**
- **4.5 Conclusion and Recommendation**
 - **4.5.1 Conclusion**
 - **4.5.2 Recommendation**

References

5 Proposal of New Paradigm for Hand and Foot Controls in the Context of Spatial Compatibility Effect

Alan H.S. Chan and Ken W.L. Chan

5.1 Introduction

- **5.1.1 Spatial Stimulus–Response (SR) Compatibility**

References
5.2 Research Plan and Methodology 59
5.3 Experiment 1: Spatial SR Compatibility Effect of Foot Controls 59
 5.3.1 Design 59
5.4 Experiment 2: Spatial SR Compatibility Effect of Hand and Foot Controls 60
 5.4.1 Design 61
5.5 Experiment 3: Spatial SR Compatibility Effect of Hand and Foot Controls for Stimulus and Response Arrays on Orthogonal Planes 61
 5.5.1 Design 62
5.6 Experiment 4: Spatial SR Compatibility Effect of Hand and Foot Controls for Stimulus and Response Arrays on Parallel and Orthogonal Planes 62
 5.6.1 Design 63
5.7 Analysis 64
References 64

6 Development of a Mathematical Model for Process with S-Type Quality Characteristics to a Quality Selection Problem .. 67
K. Tahera, R.N. Ibrahim, and P.B. Lochert
 6.1 Introduction 67
 6.2 Model Development 69
 6.3 Genetic Algorithm 74
 6.3.1 Genetic Representation 75
 6.3.2 Population Size 76
 6.3.3 Generating Initial Population 76
 6.3.4 Fitness Function 77
 6.3.5 Selection 77
 6.3.6 Mating or Crossover 77
 6.3.7 Mutation 78
 6.3.8 Termination Criteria 79
 6.3.9 Generic Algorithm Parameters 79
 6.4 Numerical Example 79
 6.5 Conclusions 80
References 80

7 Temporal Aggregation and the Production Smoothing Model: Evidence from Electronic Parts and Components Manufacturing in Taiwan ... 83
Chien-wen Shen
 7.1 Introduction 83
 7.2 Literature Review 84
 7.3 Model Specifications 85
7.4 Empirical Results
 7.4.1 Tests of Production-Smoothing Hypotheses
 7.4.2 Model Analyses
7.5 Conclusions
References

8 Simulations of Gear Shaving and the Tooth Contact Analysis
Shinn-Liang Chang, Hung-Jeng Lin, Jia-Hung Liu, and Ching-Hua Hung
 8.1 Introduction
 8.2 Mathematical Model of the Shaving Machine
 8.3 Tooth Contact Analysis of the Shaved Gear
 8.4 Longitudinal Tooth Crowning Introduced by Litvin
 8.5 Conclusion
References

9 On Aggregative Methods of Supplier Assessment
Vladimír Modrák
 9.1 Introduction
 9.2 Research Background and Motivation
 9.3 The Importance of Suppliers Assessment and Selection
 9.4 Alternative Techniques of Supplier Assessment
 9.4.1 Assessment of the Quality of Supplied Products
 9.4.2 Assessment by Adherence to Time Schedules
 9.4.3 Supplier Assessment with Respect to the Schedule of Quantity
 9.4.4 Aggregative Supplier Assessment
 9.5 Discussion and Closing Remarks
References

10 Human Factors and Ergonomics for Nondestructive Testing
B.L. Luk and Alan H.S. Chan
 10.1 Introduction
 10.2 Principles and Procedures
 10.2.1 Dye Penetrant Inspection
 10.2.2 Magnetic Particles Inspection
 10.2.3 Ultrasonic Inspection
 10.2.4 Eddy Current
 10.3 Human Abilities and Skills Required
 10.3.1 Perceptual and Cognitive Abilities
 10.3.2 Physical Strength
 10.3.3 Surface Preparation Technique
 10.4 Ergonomics, Safety, and Health Problems
 10.4.1 Illumination
11 A Novel Matrix Approach to Determine Makespan for Zero-Wait Batch Processes .. 143
Amir Shafeeq, M.I. Abdul Mutalib, K.A. Amminudin, and Ayyaz Muhammad
11.1 Introduction 143
11.2 Batch Process 144
 11.2.1 Makespan for Single-Product Batch Processing 145
 11.2.2 Makespan for Multiproduct Batch Process 146
11.3 The Matrix Method 148
11.4 Application of the Matrix Method 150
11.5 Conclusion 152
References 153

12 Interactive Meta-Goal Programming: A Decision Analysis Approach for Collaborative Manufacturing 155
Hao W. Lin, Sev V. Nagalingam, and Grier C.I. Lin
12.1 Introduction 155
12.2 Decision Making in Collaborative Manufacturing 156
12.3 Interactive Meta-Goal Programming-Based Decision Analysis Framework 157
 12.3.1 Meta-Goals 157
 12.3.2 Interactive Process 161
 12.3.3 Interactive Meta-Goal Programming-Based Decision Analysis Workflow 167
12.4 Example 169
12.5 Conclusion 171
References 172

13 Nonlinear Programming Based on Particle Swarm Optimization ... 173
Takeshi Matsui, Kosuke Kato, Masatoshi Sakawa, Takeshi Uno, and Kenji Morihara
13.1 Introduction 173
13.2 Nonlinear Programming Problem 174
13.3 Particle Swarm Optimization 174
13.4 Improvement of Particle Swarm Optimization 175
 13.4.1 Generation of Initial Search Positions of Particles 176
 13.4.2 Modified Move Schemes of a Particle 176
 13.4.3 Division of the Swarm into Two Subswarms 177
 13.4.4 Secession 178
13.4.5 Multiple Stretching Technique 179
13.4.6 The Procedure of Revised PSO 180
13.5 Numerical Example 181
13.6 Conclusions 183
References 183

<table>
<thead>
<tr>
<th>14</th>
<th>A Heuristic for the Capacitated Single Allocation Hub Location Problem</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeng-Fung Chen</td>
<td>14.1 Introduction 185</td>
<td></td>
</tr>
<tr>
<td>14.2 Previous Related Studies 186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3 A Model 187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4 Heuristic 188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4.1 Determining the Number of Hubs 188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4.2 Selecting Hub Locations 189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4.3 Allocating Nonhubs To Hubs 189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4.4 Heuristic SATLCHLP 190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5 Computational Results 190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5.1 Australia Post Data Set 191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5.2 Results 191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.6 Conclusions and Suggestions for Future Research 194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>References 195</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Multimodal Transport: A Framework for Analysis</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark K.H. Goh, Robert DeSouza, Miti Garg, Sumeet Gupta, and Luo Lei</td>
<td>15.1 Introduction 197</td>
<td></td>
</tr>
<tr>
<td>15.2 Literature Review 199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.3 Theoretical Framework 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.4 Research Methodology 201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.5 Case Study 202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.5.1 Railways 203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.5.2 Road 203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.5.3 Maritime 203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.5.4 Multimodal 204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.6 Future Directions for Research 207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>References 208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>Fractional Matchings of Graphs</th>
<th>209</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jiguo Yu and Baoxiang Cao</td>
<td>16.1 Terminology and Notation 209</td>
<td></td>
</tr>
<tr>
<td>16.2 Basic Results on Fractional Matching 210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.3 Fractional Factor-Critical Graph 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.4 Fractional Deleted Graphs 215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.5 Fractional Covered Graphs 217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.6 Fractional Extendable Graph 220</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17 Correlation Functions for Dynamic Load Balancing of Cycle Shops

Claudia Fiedler and Wolfgang Meyer

17.1 Problem Statement

17.2 Load-Balancing Systems: State of the Art

17.3 Process Plan and Resource Model

17.4 Theory of Correlation Scheduling

17.4.1 Two Processes Being Sent to the Plant

17.4.2 Three Processes Being Sent to the Plant

17.4.3 Generalization to n Processes

17.5 Dynamic Scheduling

17.5.1 Collision Functions

17.5.2 Scheduling Procedure

17.6 Load Balancing

17.6.1 Load Balancing at System Level

17.6.2 Load Balancing at Subsystem Level

17.7 Conclusion

References

18 Neural Network-Based Integral Sliding Mode Control for Nonlinear Uncertain Systems

S.W. Wang and D.L. Yu

18.1 Introduction

18.1.1 Sliding Mode Control

18.1.2 Integral Sliding Mode Control

18.1.3 Radial Basis Function Neural Network Approximation

18.2 Problem Statement

18.3 New Integral Sliding Surface

18.4 Sliding Mode Control Law

18.5 Numerical Example

18.6 Conclusions

References

19 Decentralized Neuro-Fuzzy Control of a Class of Nonlinear Systems

Miguel A. Hernández and Yu Tang

19.1 Introduction

19.2 Problem Statement

19.3 Recurrent Neuro-fuzzy Networks

19.4 Design of the Decentralized Control

19.4.1 Control Law

19.4.2 Stability Analysis

19.5 Output Feedback
20 A New Training Algorithm of Adaptive Fuzzy Control for Chaotic Dynamic Systems ... 275
Chun-Fei Hsu, Bore-Kuen Lee, and Tsu-Tian Lee
20.1 Introduction 275
20.2 Problem Formulation 277
20.3 Design of AFC with PID-Type Learning Algorithm 278
 20.3.1 Approximation of Fuzzy System 278
 20.3.2 Design of PID-AFC 279
 20.3.3 Design of PID-AFC with Bound Estimation 281
20.4 Simulation Results 284
20.5 Conclusions 287
References 289

21 General-Purpose Simulation Management for Satellite Navigation Signal Simulation .. 291
Ge Li, Xinyu Yao, and Kedi Huang
21.1 Introduction 291
21.2 The Real-Time Application Requirements 292
 21.2.1 Requirements for the Simulation Architecture 292
 21.2.2 Requirements of the Real-Time Calculation for the High-Fidelity Model 292
 21.2.3 Requirements of the Data Communication for Different Layers 293
 21.2.4 Requirements of the Real-Time Simulation Engine 293
21.3 A General-Purpose Architecture for Satellite Navigation Signal Simulation 293
21.4 General-Purpose Real-Time Distributed Simulation Managements 295
 21.4.1 Experiment Design and Management Techniques 295
 21.4.2 Simulation Database Techniques 296
 21.4.3 Simulation Management Techniques 297
 21.4.4 System Scalability Realization 298
21.5 Conclusions 298
References 299

22 Multilayered Quality-of-Service Architecture with Cross-layer Coordination for Teleoperation System 301
X.U. Lei and L.I. Guo-dong
22.1 Introduction 301
22.2 Network Performance Parameters Analysis 302
22.3 Architectural Framework 303
22.4 Communication Network QoS Enhancement 305
 22.4.1 Network Layer QoS Optimization 305
 22.4.2 Data Link Layer QoS Optimization 306
22.5 Resource Network QoS Enhancement 307
 22.5.1 Transport Layer QoS Optimization 307
 22.5.2 Presentation Layer QoS Enhancing 308
 22.5.3 Session Layer QoS Supervision 309
 22.5.4 Application Layer QoS 309
22.6 Cross-layer Coordination and Adaptation 309
22.7 Application Scenarios 311
22.8 Conclusion 313
References 313

23 Improvement of State Estimation for Systems with Chaotic Noise ... 315
 Pitikhate Sooraksa and Prakob Jandaeng
 23.1 Introduction 315
 23.2 Improvement of Adaptive Kalman Filtering 316
 23.3 Results
 23.3.1 Model 319
 23.3.2 Computer Simulation 319
 23.4 Conclusion 325
 References 325

24 Combined Sensitivity–Complementary Sensitivity Min–Max Approach for Load Disturbance–Setpoint Tradeoff Design 327
 Ramon Vilanova and Orlando Arrieta
 24.1 Introduction 327
 24.2 Problem Formulation
 24.2.1 PID Controller 329
 24.2.2 Process Model 329
 24.2.3 Design Problem Formulation 329
 24.3 Solution to the Optimal Approximation Problem 331
 24.4 Step Response Tuning 333
 24.5 Disturbance Attenuation Tuning 335
 24.6 Example 336
 24.7 Trade-off Tuning 338
 24.8 Conclusions 342
 References 342

25 Nonlinear Adaptive Sliding Mode Control for a Rotary Inverted Pendulum .. 345
 Yanliang Zhang, Wei Tech Ang, Jiong Jin, Shudong Zhang, and Zhihong Man
 25.1 Introduction 345
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.2</td>
<td>Background</td>
<td>346</td>
</tr>
<tr>
<td>25.2.1</td>
<td>Mathematical Model of System</td>
<td>346</td>
</tr>
<tr>
<td>25.2.2</td>
<td>Sliding Mode Control</td>
<td>347</td>
</tr>
<tr>
<td>25.2.3</td>
<td>Adaptive Control</td>
<td>348</td>
</tr>
<tr>
<td>25.3</td>
<td>Sliding Mode Control: Design and Simulation</td>
<td>348</td>
</tr>
<tr>
<td>25.3.1</td>
<td>Linear Sliding Mode Control</td>
<td>348</td>
</tr>
<tr>
<td>25.3.2</td>
<td>Nonlinear Sliding Mode Control</td>
<td>350</td>
</tr>
<tr>
<td>25.4</td>
<td>Nonlinear Adaptive Sliding Mode Control Design and Simulation</td>
<td>353</td>
</tr>
<tr>
<td>25.4.1</td>
<td>System Parameters</td>
<td>353</td>
</tr>
<tr>
<td>25.4.2</td>
<td>Parameter Selection</td>
<td>356</td>
</tr>
<tr>
<td>25.5</td>
<td>Experimental Results</td>
<td>357</td>
</tr>
<tr>
<td>25.6</td>
<td>Conclusion</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>359</td>
</tr>
</tbody>
</table>

26 Robust Load Frequency Sliding Mode Control Based on Uncertainty and Disturbance Estimator
P.D. Shendge, B.M. Patre, and S.B. Phadke

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1</td>
<td>Introduction</td>
<td>361</td>
</tr>
<tr>
<td>26.2</td>
<td>Dynamic Model for Load Frequency Control</td>
<td>362</td>
</tr>
<tr>
<td>26.3</td>
<td>Model Following and UDE-Based Control Law</td>
<td>364</td>
</tr>
<tr>
<td>26.4</td>
<td>Design of Control</td>
<td>364</td>
</tr>
<tr>
<td>26.4.1</td>
<td>Uncertainty and Disturbance Estimation with First-Order Filter</td>
<td>366</td>
</tr>
<tr>
<td>26.4.2</td>
<td>Uncertainty and Disturbance Estimation with Second-Order Filter</td>
<td>366</td>
</tr>
<tr>
<td>26.4.3</td>
<td>Uncertainty and Disturbance Estimation with nth-Order Filter</td>
<td>367</td>
</tr>
<tr>
<td>26.5</td>
<td>Model Following and UDE Based LFC</td>
<td>368</td>
</tr>
<tr>
<td>26.6</td>
<td>Results</td>
<td>370</td>
</tr>
<tr>
<td>26.7</td>
<td>Conclusion</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>373</td>
</tr>
</tbody>
</table>

27 Robust Intelligent Motion Control for Linear Piezoelectric Ceramic Motor System Using Self-constructing Neural Network
Chun-Fei Hsu, Bore-Kuen Lee, and Tsu-Tian Lee

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1</td>
<td>Introduction</td>
<td>375</td>
</tr>
<tr>
<td>27.2</td>
<td>Problem Formulation</td>
<td>377</td>
</tr>
<tr>
<td>27.3</td>
<td>Robust Intelligent Motion Controller Design</td>
<td>378</td>
</tr>
<tr>
<td>27.3.1</td>
<td>Description of SCNN</td>
<td>379</td>
</tr>
<tr>
<td>27.3.2</td>
<td>Approximation of SCNN</td>
<td>381</td>
</tr>
<tr>
<td>27.3.3</td>
<td>Design of RIMC</td>
<td>382</td>
</tr>
<tr>
<td>27.4</td>
<td>Experimental Results</td>
<td>384</td>
</tr>
<tr>
<td>27.5</td>
<td>Conclusions</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>390</td>
</tr>
</tbody>
</table>
31 Newton–Tau Method ... 433
Karim Ivaz and Bahram Sadigh Mostahkam
31.1 Introduction 433
31.2 Solving Nonlinear Fredholm Integral Equation 433
 31.2.1 Formulation of the Problem 433
 31.2.2 Application of the Newton Method 434
 31.2.3 Application of the Tau Method 435
 31.2.4 Numerical Examples 436
31.3 Solving a System of Nonlinear Integral Equations 438
 31.3.1 Formulation of the Problem 438
 31.3.2 Application of the Newton Method to SNFIE 440
 31.3.3 The Tau Method Applied to (8) 441
 31.3.4 Numerical Examples 443
31.4 Solving Nonlinear Integro-Differential Equation 445
 31.4.1 Formulation of the Problem 445
 31.4.2 Application of the Newton Method 447
 31.4.3 Application of the Tau Method 448
 31.4.4 Numerical Examples 451
References 452

32 Reconfigurable Hardware Implementation of the Successive
Overrelaxation Method ... 453
Safaa J. Kasbah, Ramzi A. Haraty, and Issam W. Damaj
32.1 Introduction 453
32.2 Description of the Algorithm 455
32.3 Reconfigurable Computing
 32.3.1 Hardware Compilation 456
 32.3.2 Handel-C Language 457
32.4 Hardware Implementation of SOR 459
32.5 Experimental Results 462
32.6 Conclusion 464
References 464

33 Tabu Search Algorithm Based on Strategic Oscillation for
Nonlinear Minimum Spanning Tree Problems 467
Hideki Katagiri, Masatoshi Sakawa, Kosuke Kato, Ichiro Nishizaki,
Takeshi Uno, and Tomohiro Hayashida
33.1 Introduction 467
33.2 Problem Formulation 468
33.3 Summary of Tabu Search 469
33.4 Tabu Search Algorithm Based on Strategic Oscillation for
 Nonlinear MST Problems 469
 33.4.1 Initial Solution 470
 33.4.2 Neighborhood Structure and Local Search 471
 33.4.3 Tabu List and Aspiration Criterion 471
34 Customization of Visual Lobe Measurement System for Testing the Effects of Foveal Load .. 477
Cathy H.Y. Chiu and Alan H.S. Chan
34.1 Introduction .. 477
34.2 Design .. 480
 34.2.1 Additional Features 480
 34.2.2 Stimuli ... 481
 34.2.3 Software .. 483
 34.2.4 Apparatus 483
 34.2.5 Output .. 483
34.3 Conclusion ... 484
References .. 485

Index .. 487
Advances in Industrial Engineering and Operations Research
Chan, A.H.-s. (Ed.)
2008, XXVII, 497 p., Hardcover