Contents

Preface .. v

Contributors .. xxiv

1 A Comprehensive Movement Compatibility Study for Hong Kong Chinese.. 1
 W.H. Chan and Alan H.S. Chan
 1.1 Introduction .. 1
 1.2 Methods ... 4
 1.2.1 Experimental Design .. 4
 1.2.2 Subjects .. 4
 1.3 Results and Discussion .. 4
 1.3.1 Response Preference and Mean Stereotype Strength 4
 1.3.2 Reversibility .. 7
 1.3.3 Response Time .. 8
 1.4 Conclusion and Recommendations ... 9
 References ... 10

2 A Study of Comparative Design Satisfaction Between Culture and Modern Bamboo Chair................................... 13
 Vanchai Laemlaksaku and Sittichai Kaewkuekool
 2.1 Introduction .. 13
 2.2 Methodology .. 14
 2.2.1 Design and Fabrication .. 14
 2.2.2 Sample Selection .. 17
 2.2.3 Questionnaire ... 17
 2.3 Results .. 18
 2.3.1 Dimensional Appropriateness of Chair 18
 2.3.2 Comfort Level of Chair .. 21
2.4 Conclusions
 2.4.1 Dimensional Appropriateness of the Chair 24
 2.4.2 Comfort Level 24
 2.4.3 Aesthetic Appeal of the Modern Bamboo Chair 25
2.5 Recommendations
References 25

3 Factors Influencing Symbol-Training Effectiveness 27
Annie W.Y. Ng and Alan H.S. Chan
3.1 Introduction 27
3.2 Factors Influencing Symbol-Training Effectiveness 28
 3.2.1 Training Method 28
 3.2.2 Other Training Factors 34
3.3 Experimental Design and Analysis for Symbol-Training Effectiveness Research 34
3.4 Conclusion 36
References 36

4 Multiple-Colony Ant Algorithm with Forward–Backward Scheduling Approach for Job-Shop Scheduling Problem 39
Apinanthana Udomsakdigool and Voratas Kachitvichyanukul
4.1 Introduction 39
4.2 Problem Definition and Graph-Based Representation 40
 4.2.1 Problem Definition 40
 4.2.2 Graph-Based Representation 41
 4.2.3 The General Concept of ACO Algorithm 42
 4.2.4 Memory Requirement for Ant and Colony 43
 4.2.5 Hierarchical Cooperation in Multiple Colonies 44
 4.2.6 Backward Scheduling Approach 45
4.3 Description of Algorithm 46
 4.3.1 Initialize Pheromone and Parameter Setting 47
 4.3.2 Local Improvement 50
 4.3.3 Pheromone Updating 51
 4.3.4 Restart Process 53
4.4 Experimental Results 53
4.5 Conclusion and Recommendation 53
 4.5.1 Conclusion 53
 4.5.2 Recommendation 54
References 54

5 Proposal of New Paradigm for Hand and Foot Controls in the Context of Spatial Compatibility Effect 57
Alan H.S. Chan and Ken W.L. Chan
5.1 Introduction 57
 5.1.1 Spatial Stimulus–Response (SR) Compatibility 58
5.2 Research Plan and Methodology 59
5.3 Experiment 1: Spatial SR Compatibility Effect of Foot Controls 59
 5.3.1 Design 59
5.4 Experiment 2: Spatial SR Compatibility Effect of Hand and Foot Controls 60
 5.4.1 Design 61
5.5 Experiment 3: Spatial SR Compatibility Effect of Hand and Foot Controls for Stimulus and Response Arrays on Orthogonal Planes 61
 5.5.1 Design 62
5.6 Experiment 4: Spatial SR Compatibility Effect of Hand and Foot Controls for Stimulus and Response Arrays on Parallel and Orthogonal Planes 62
 5.6.1 Design 63
5.7 Analysis 64
References 64

6 Development of a Mathematical Model for Process with S-Type Quality Characteristics to a Quality Selection Problem .. 67
 K. Tahera, R.N. Ibrahim, and P.B. Lochert
6.1 Introduction 67
6.2 Model Development 69
6.3 Genetic Algorithm 74
 6.3.1 Genetic Representation 75
 6.3.2 Population Size 76
 6.3.3 Generating Initial Population 76
 6.3.4 Fitness Function 77
 6.3.5 Selection 77
 6.3.6 Mating or Crossover 77
 6.3.7 Mutation 78
 6.3.8 Termination Criteria 79
 6.3.9 Generic Algorithm Parameters 79
6.4 Numerical Example 79
6.5 Conclusions 80
References 80

7 Temporal Aggregation and the Production Smoothing Model: Evidence from Electronic Parts and Components Manufacturing in Taiwan ... 83
 Chien-wen Shen
7.1 Introduction 83
7.2 Literature Review 84
7.3 Model Specifications 85
7.4 Empirical Results
 7.4.1 Tests of Production-Smoothing Hypotheses 88
 7.4.2 Model Analyses 88
7.5 Conclusions 93
References 94

8 Simulations of Gear Shaving and the Tooth Contact Analysis 95
Shinn-Liang Chang, Hung-Jeng Lin, Jia-Hung Liu, and Ching-Hua Hung
 8.1 Introduction 95
 8.2 Mathematical Model of the Shaving Machine 96
 8.3 Tooth Contact Analysis of the Shaved Gear 103
 8.4 Longitudinal Tooth Crowning Introduced by Litvin 105
 8.5 Conclusion 109
References 109

9 On Aggregative Methods of Supplier Assessment 111
Vladimír Modrák
 9.1 Introduction 111
 9.2 Research Background and Motivation 112
 9.3 The Importance of Suppliers Assessment and Selection 114
 9.4 Alternative Techniques of Supplier Assessment 116
 9.4.1 Assessment of the Quality of Supplied Products 117
 9.4.2 Assessment by Adherence to Time Schedules 117
 9.4.3 Supplier Assessment with Respect to the Schedule of Quantity 120
 9.4.4 Aggregative Supplier Assessment 123
 9.5 Discussion and Closing Remarks 124
References 124

10 Human Factors and Ergonomics for Nondestructive Testing 127
B.L. Luk and Alan H.S. Chan
 10.1 Introduction 127
 10.2 Principles and Procedures 128
 10.2.1 Dye Penetrant Inspection 128
 10.2.2 Magnetic Particles Inspection 129
 10.2.3 Ultrasonic Inspection 130
 10.2.4 Eddy Current 132
 10.3 Human Abilities and Skills Required 133
 10.3.1 Perceptual and Cognitive Abilities 133
 10.3.2 Physical Strength 135
 10.3.3 Surface Preparation Technique 135
 10.4 Ergonomics, Safety, and Health Problems 136
 10.4.1 Illumination 136
10.4.2 Working Posture 136
10.4.3 Potential Chemical Hazards 138
10.5 Conclusions and Recommendations 140
References 141

11 A Novel Matrix Approach to Determine Makespan for Zero-Wait Batch Processes .. 143
Amir Shafeeq, M.I. Abdul Mutalib, K.A. Amminudin, and Ayyaz Muhammad
11.1 Introduction 143
11.2 Batch Process 144
 11.2.1 Makespan for Single-Product Batch Processing 145
 11.2.2 Makespan for Multiproduct Batch Process 146
11.3 The Matrix Method 148
11.4 Application of the Matrix Method 150
11.5 Conclusion 152
References 153

12 Interactive Meta-Goal Programming: A Decision Analysis Approach for Collaborative Manufacturing 155
Hao W. Lin, Sev V. Nagalingam, and Grier C.I. Lin
12.1 Introduction 155
12.2 Decision Making in Collaborative Manufacturing 156
12.3 Interactive Meta-Goal Programming-Based Decision Analysis Framework 157
 12.3.1 Meta-Goals 157
 12.3.2 Interactive Process 161
 12.3.3 Interactive Meta-Goal Programming-Based Decision Analysis Workflow 167
12.4 Example 169
12.5 Conclusion 171
References 172

13 Nonlinear Programming Based on Particle Swarm Optimization ... 173
Takeshi Matsui, Kosuke Kato, Masatoshi Sakawa, Takeshi Uno, and Kenji Morihara
13.1 Introduction 173
13.2 Nonlinear Programming Problem 174
13.3 Particle Swarm Optimization 174
13.4 Improvement of Particle Swarm Optimization 175
 13.4.1 Generation of Initial Search Positions of Particles 176
 13.4.2 Modified Move Schemes of a Particle 176
 13.4.3 Division of the Swarm into Two Subswarms 177
 13.4.4 Secession 178
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4.5 Multiple Stretching Technique</td>
<td>179</td>
</tr>
<tr>
<td>13.4.6 The Procedure of Revised PSO</td>
<td>180</td>
</tr>
<tr>
<td>13.5 Numerical Example</td>
<td>181</td>
</tr>
<tr>
<td>13.6 Conclusions</td>
<td>183</td>
</tr>
<tr>
<td>References</td>
<td>183</td>
</tr>
<tr>
<td>14 A Heuristic for the Capacitated Single Allocation</td>
<td>185</td>
</tr>
<tr>
<td>Hub Location Problem</td>
<td></td>
</tr>
<tr>
<td>Jeng-Fung Chen</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>14.2 Previous Related Studies</td>
<td>186</td>
</tr>
<tr>
<td>14.3 A Model</td>
<td>187</td>
</tr>
<tr>
<td>14.4 Heuristic</td>
<td>188</td>
</tr>
<tr>
<td>14.4.1 Determining the Number of Hubs</td>
<td>188</td>
</tr>
<tr>
<td>14.4.2 Selecting Hub Locations</td>
<td>189</td>
</tr>
<tr>
<td>14.4.3 Allocating Nonhubs To Hubs</td>
<td>189</td>
</tr>
<tr>
<td>14.4.4 Heuristic SATLCHLP</td>
<td>190</td>
</tr>
<tr>
<td>14.5 Computational Results</td>
<td>190</td>
</tr>
<tr>
<td>14.5.1 Australia Post Data Set</td>
<td>191</td>
</tr>
<tr>
<td>14.5.2 Results</td>
<td>191</td>
</tr>
<tr>
<td>14.6 Conclusions and Suggestions for Future Research</td>
<td>194</td>
</tr>
<tr>
<td>References</td>
<td>195</td>
</tr>
<tr>
<td>15 Multimodal Transport: A Framework for Analysis</td>
<td>197</td>
</tr>
<tr>
<td>Mark K.H. Goh, Robert DeSouza, Miti Garg, Sumeet Gupta, and Luo Lei</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>197</td>
</tr>
<tr>
<td>15.2 Literature Review</td>
<td>199</td>
</tr>
<tr>
<td>15.3 Theoretical Framework</td>
<td>200</td>
</tr>
<tr>
<td>15.4 Research Methodology</td>
<td>201</td>
</tr>
<tr>
<td>15.5 Case Study</td>
<td>202</td>
</tr>
<tr>
<td>15.5.1 Railways</td>
<td>203</td>
</tr>
<tr>
<td>15.5.2 Road</td>
<td>203</td>
</tr>
<tr>
<td>15.5.3 Maritime</td>
<td>203</td>
</tr>
<tr>
<td>15.5.4 Multimodal</td>
<td>204</td>
</tr>
<tr>
<td>15.6 Future Directions for Research</td>
<td>207</td>
</tr>
<tr>
<td>References</td>
<td>208</td>
</tr>
<tr>
<td>16 Fractional Matchings of Graphs</td>
<td>209</td>
</tr>
<tr>
<td>Jiguo Yu and Baoxiang Cao</td>
<td></td>
</tr>
<tr>
<td>16.1 Terminology and Notation</td>
<td>209</td>
</tr>
<tr>
<td>16.2 Basic Results on Fractional Matching</td>
<td>210</td>
</tr>
<tr>
<td>16.3 Fractional Factor-Critical Graph</td>
<td>211</td>
</tr>
<tr>
<td>16.4 Fractional Deleted Graph</td>
<td>215</td>
</tr>
<tr>
<td>16.5 Fractional Covered Graph</td>
<td>217</td>
</tr>
<tr>
<td>16.6 Fractional Extendable Graph</td>
<td>220</td>
</tr>
</tbody>
</table>
17 Correlation Functions for Dynamic Load Balancing of Cycle Shops
Claudia Fiedler and Wolfgang Meyer

17.1 Problem Statement
17.2 Load-Balancing Systems: State of the Art
17.3 Process Plan and Resource Model
17.4 Theory of Correlation Scheduling
 17.4.1 Two Processes Being Sent to the Plant
 17.4.2 Three Processes Being Sent to the Plant
 17.4.3 Generalization to n Processes
17.5 Dynamic Scheduling
 17.5.1 Collision Functions
 17.5.2 Scheduling Procedure
17.6 Load Balancing
 17.6.1 Load Balancing at System Level
 17.6.2 Load Balancing at Subsystem Level
17.7 Conclusion

References

18 Neural Network-Based Integral Sliding Mode Control for Nonlinear Uncertain Systems
S.W. Wang and D.L. Yu

18.1 Introduction
 18.1.1 Sliding Mode Control
 18.1.2 Integral Sliding Mode Control
 18.1.3 Radial Basis Function Neural Network Approximation
18.2 Problem Statement
18.3 New Integral Sliding Surface
18.4 Sliding Mode Control Law
18.5 Numerical Example
18.6 Conclusions

References

19 Decentralized Neuro-Fuzzy Control of a Class of Nonlinear Systems
Miguel A. Hernández and Yu Tang

19.1 Introduction
19.2 Problem Statement
19.3 Recurrent Neuro-fuzzy Networks
19.4 Design of the Decentralized Control
 19.4.1 Control Law
 19.4.2 Stability Analysis
19.5 Output Feedback
20 A New Training Algorithm of Adaptive Fuzzy Control for Chaotic Dynamic Systems
Chun-Fei Hsu, Bore-Kuen Lee, and Tsu-Tian Lee
20.1 Introduction 275
20.2 Problem Formulation 277
20.3 Design of AFC with PID-Type Learning Algorithm 278
 20.3.1 Approximation of Fuzzy System 278
 20.3.2 Design of PID-AFC 279
 20.3.3 Design of PID-AFC with Bound Estimation 281
20.4 Simulation Results 284
20.5 Conclusions 287
References 289

21 General-Purpose Simulation Management for Satellite Navigation Signal Simulation
Ge Li, Xinyu Yao, and Kedi Huang
21.1 Introduction 291
21.2 The Real-Time Application Requirements 292
 21.2.1 Requirements for the Simulation Architecture 292
 21.2.2 Requirements of the Real-Time Calculation for the High-Fidelity Model 292
 21.2.3 Requirements of the Data Communication for Different Layers 293
 21.2.4 Requirements of the Real-Time Simulation Engine 293
21.3 A General-Purpose Architecture for Satellite Navigation Signal Simulation 293
21.4 General-Purpose Real-Time Distributed Simulation Managements 295
 21.4.1 Experiment Design and Management Techniques 295
 21.4.2 Simulation Database Techniques 296
 21.4.3 Simulation Management Techniques 297
 21.4.4 System Scalability Realization 298
21.5 Conclusions 298
References 299

22 Multilayered Quality-of-Service Architecture with Cross-layer Coordination for Teleoperation System
X.U. Lei and L.I. Guo-dong
22.1 Introduction 301
22.2 Network Performance Parameters Analysis 302
22.3 Architectural Framework 303
22.4 Communication Network QoS Enhancement
 22.4.1 Network Layer QoS Optimization 305
 22.4.2 Data Link Layer QoS Optimization 306
22.5 Resource Network QoS Enhancement
 22.5.1 Transport Layer QoS Optimization 307
 22.5.2 Presentation Layer QoS Enhancing 308
 22.5.3 Session Layer QoS Supervision 309
 22.5.4 Application Layer QoS 309
22.6 Cross-layer Coordination and Adaptation 309
22.7 Application Scenarios 311
22.8 Conclusion 313
References 313

23 Improvement of State Estimation for Systems with Chaotic Noise
 Pitikhate Sooraksa and Prakob Jandaeng
 23.1 Introduction 315
 23.2 Improvement of Adaptive Kalman Filtering 316
 23.3 Results 319
 23.3.1 Model 319
 23.3.2 Computer Simulation 319
 23.4 Conclusion 325
References 325

24 Combined Sensitivity–Complementary Sensitivity Min–Max Approach for Load Disturbance–Setpoint Tradeoff Design
 Ramon Vilanova and Orlando Arrieta
 24.1 Introduction 327
 24.2 Problem Formulation 328
 24.2.1 PID Controller 329
 24.2.2 Process Model 329
 24.2.3 Design Problem Formulation 329
 24.3 Solution to the Optimal Approximation Problem 331
 24.4 Step Response Tuning 333
 24.5 Disturbance Attenuation Tuning 335
 24.6 Example 336
 24.7 Trade-off Tuning 338
 24.8 Conclusions 342
References 342

25 Nonlinear Adaptive Sliding Mode Control for a Rotary Inverted Pendulum
 Yanliang Zhang, Wei Tech Ang, Jiong Jin, Shudong Zhang, and Zhihong Man
 25.1 Introduction 345

References 313
25.2 Background
 25.2.1 Mathematical Model of System 346
 25.2.2 Sliding Mode Control 347
 25.2.3 Adaptive Control 348
25.3 Sliding Mode Control: Design and Simulation 348
 25.3.1 Linear Sliding Mode Control 348
 25.3.2 Nonlinear Sliding Mode Control 350
25.4 Nonlinear Adaptive Sliding Mode Control Design
 and Simulation 353
 25.4.1 System Parameters 353
 25.4.2 Parameter Selection 356
25.5 Experimental Results 357
25.6 Conclusion 359
References 359

26 Robust Load Frequency Sliding Mode Control Based on
Uncertainty and Disturbance Estimator 361
P.D. Shendge, B.M. Patre, and S.B. Phadke
26.1 Introduction 361
26.2 Dynamic Model for Load Frequency Control 362
26.3 Model Following and UDE-Based Control Law 364
26.4 Design of Control 364
 26.4.1 Uncertainty and Disturbance Estimation
 with First-Order Filter 366
 26.4.2 Uncertainty and Disturbance Estimation
 with Second-Order Filter 366
 26.4.3 Uncertainty and Disturbance Estimation
 with nth-Order Filter 367
26.5 Model Following and UDE Based LFC 368
26.6 Results 370
26.7 Conclusion 373
References 373

27 Robust Intelligent Motion Control for Linear Piezoelectric
Ceramic Motor System Using Self-constructing Neural Network . . . 375
Chun-Fei Hsu, Bore-Kuen Lee, and Tsu-Tian Lee
27.1 Introduction 375
27.2 Problem Formulation 377
27.3 Robust Intelligent Motion Controller Design 378
 27.3.1 Description of SCNN 379
 27.3.2 Approximation of SCNN 381
 27.3.3 Design of RIMC 382
27.4 Experimental Results 384
27.5 Conclusions 388
References 390
28 Development of Hybrid Magnetic Bearings System for Axial-Flow Blood Pump 391
Lim Tau Meng and Cheng Shanbao
28.1 Introduction 391
28.2 Design of Axial-flow Blood Pump 392
28.3 Principles of Magnetic Bearings 394
28.4 Principles of Lorentz-type Motor 394
28.5 Control of the HMBs System 396
28.6 Performance of the HMBs System 397
28.7 Conclusions and Future Work 399
References 399

29 Critical Angle for Optimal Correlation Assignment to Control Memory and Computational Load Requirements in a Densely Populated Target Environment 401
D.M. Akbar Hussain and Zaki Ahmed
29.1 Introduction 402
29.2 Critical Angle Representation 402
29.3 Motion Model Consideration 404
29.4 Implementation 406
29.5 Performance Parameter 407
29.6 Simulation Results 408
29.7 Conclusion 412
References 413

30 High-Precision Finite Difference Method Calculations of Electrostatic Potential ... 415
David Edwards, Jr.
30.1 Introduction 415
30.1.1 Historical Development 1970–2007 415
30.1.2 Brief Description of the Process 416
30.2 Construction of Order-10 Algorithm for General Mesh Points and the Definition of the grad6 Function 417
30.3 Properties of the grad6 Function and the Definition of the Maximum-Error Function 419
30.4 Comparison of Different Algorithms for the Two-Tube Zero-Gap Lens 423
30.5 Application to Region Construction 425
30.6 Dependence of Algorithm Precision upon the Set of Surrounding Points 426
30.7 Notes of Caution 428
30.8 Summary and Conclusion 430
Appendix A 431
References 432
31 Newton–Tau Method

Karim Ivaz and Bahram Sadigh Mostahkam

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1 Introduction</td>
<td>433</td>
</tr>
<tr>
<td>31.2 Solving Nonlinear Fredholm Integral Equation</td>
<td></td>
</tr>
<tr>
<td>31.2.1 Formulation of the Problem</td>
<td>433</td>
</tr>
<tr>
<td>31.2.2 Application of the Newton Method</td>
<td>434</td>
</tr>
<tr>
<td>31.2.3 Application of the Tau Method</td>
<td>435</td>
</tr>
<tr>
<td>31.2.4 Numerical Examples</td>
<td>436</td>
</tr>
<tr>
<td>31.3 Solving a System of Nonlinear Integral Equations</td>
<td></td>
</tr>
<tr>
<td>31.3.1 Formulation of the Problem</td>
<td>438</td>
</tr>
<tr>
<td>31.3.2 Application of the Newton Method to SNFIE</td>
<td>440</td>
</tr>
<tr>
<td>31.3.3 The Tau Method Applied to (8)</td>
<td>441</td>
</tr>
<tr>
<td>31.3.4 Numerical Examples</td>
<td>443</td>
</tr>
<tr>
<td>31.4 Solving Nonlinear Integro-Differential Equation</td>
<td></td>
</tr>
<tr>
<td>31.4.1 Formulation of the Problem</td>
<td>445</td>
</tr>
<tr>
<td>31.4.2 Application of the Newton Method</td>
<td>447</td>
</tr>
<tr>
<td>31.4.3 Application of the Tau Method</td>
<td>448</td>
</tr>
<tr>
<td>31.4.4 Numerical Examples</td>
<td>451</td>
</tr>
</tbody>
</table>

References 452

32 Reconfigurable Hardware Implementation of the Successive Overrelaxation Method

Safaa J. Kasbah, Ramzi A. Haraty, and Issam W. Damaj

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.1 Introduction</td>
<td>453</td>
</tr>
<tr>
<td>32.2 Description of the Algorithm</td>
<td>455</td>
</tr>
<tr>
<td>32.3 Reconfigurable Computing</td>
<td></td>
</tr>
<tr>
<td>32.3.1 Hardware Compilation</td>
<td>456</td>
</tr>
<tr>
<td>32.3.2 Handel-C Language</td>
<td>457</td>
</tr>
<tr>
<td>32.4 Hardware Implementation of SOR</td>
<td>459</td>
</tr>
<tr>
<td>32.5 Experimental Results</td>
<td>462</td>
</tr>
<tr>
<td>32.6 Conclusion</td>
<td>464</td>
</tr>
</tbody>
</table>

References 464

33 Tabu Search Algorithm Based on Strategic Oscillation for Nonlinear Minimum Spanning Tree Problems

Hideki Katagiri, Masatoshi Sakawa, Kosuke Kato, Ichiro Nishizaki, Takeshi Uno, and Tomohiro Hayashida

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1 Introduction</td>
<td>467</td>
</tr>
<tr>
<td>33.2 Problem Formulation</td>
<td>468</td>
</tr>
<tr>
<td>33.3 Summary of Tabu Search</td>
<td>469</td>
</tr>
<tr>
<td>33.4 Tabu Search Algorithm Based on Strategic Oscillation for Nonlinear MST Problems</td>
<td></td>
</tr>
<tr>
<td>33.4.1 Initial Solution</td>
<td>469</td>
</tr>
<tr>
<td>33.4.2 Neighborhood Structure and Local Search</td>
<td>470</td>
</tr>
<tr>
<td>33.4.3 Tabu List and Aspiration Criterion</td>
<td>471</td>
</tr>
</tbody>
</table>
Contents

33.4.4 Strategic Oscillation 471
33.4.5 Diversification 472
33.5 Numerical Experiment 472
33.6 Conclusion 475
References 475

34 Customization of Visual Lobe Measurement System for Testing the Effects of Foveal Load ... 477
Cathy H.Y. Chiu and Alan H.S. Chan
34.1 Introduction 477
34.2 Design 480
34.2.1 Additional Features 480
34.2.2 Stimuli 481
34.2.3 Software 483
34.2.4 Apparatus 483
34.2.5 Output 483
34.3 Conclusion 484
References 485

Index .. 487
Advances in Industrial Engineering and Operations Research
Chan, A.H.-s. (Ed.)
2008, XXVII, 497 p., Hardcover