Contents

1 Probability ... 1
 1.1 Introduction ... 1
 1.2 Applying Set Theory to Probability 2
 1.3 Counting Sample Space Points 4
 1.4 The Multiplication Principle 4
 1.5 Permutations ... 5
 1.5.1 n Distinct Objects Taken n at a Time 5
 1.5.2 n Distinct Objects Taken k at a Time 6
 1.6 Permutations of Objects in Groups 6
 1.7 Combinations ... 8
 1.8 Probability .. 8
 1.9 Axioms of Probability ... 9
 1.10 Other Probability Relationships 9
 1.11 Random Variables .. 10
 1.12 Cumulative Distribution Function (cdf) 11
 1.12.1 cdf in the Discrete Case 12
 1.13 Probability Density Function (pdf) 13
 1.14 Probability Mass Function 13
 1.15 Expected Value and Variance 14
 1.16 Common Continuous RVs 16
 1.17 Continuous Uniform (Flat) RV 16
 1.18 Gaussian RV .. 18
 1.19 Exponential RV ... 19
 1.20 Pareto RV .. 19
 1.21 Common Discrete RVs .. 21
 1.22 Discrete Uniform RV ... 21
 1.23 Bernoulli (Binary) RV 23
 1.24 Geometric RV .. 24
 1.25 Binomial RV .. 25
 1.25.1 Approximating the Binomial Distribution 26
 1.26 Poisson RV .. 28
 1.27 Systems with Many Random Variables 30
 1.28 Joint cdf and pdf ... 31
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.29</td>
<td>Individual pmf From a Given Joint pmf</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>Expected Value</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>1.31</td>
<td>Correlation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>Variance</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>Covariance</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1.34</td>
<td>Transforming Random Variables</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>1.34.1</td>
<td>Continuous Case</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>1.34.2</td>
<td>Discrete Case</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>1.35</td>
<td>Generating Random Numbers</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>1.35.1</td>
<td>Uniform Distribution</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>1.35.2</td>
<td>Inversion Method</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>1.35.3</td>
<td>Rejection Method</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>1.35.4</td>
<td>Importance Sampling Method</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Random Processes</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Notation</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Poisson Process</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Exponential Process</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Deterministic and Nondeterministic Processes</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Ensemble Average</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Time Average</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Autocorrelation Function</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Stationary Processes</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Cross-Correlation Function</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Covariance Function</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Correlation Matrix</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Covariance Matrix</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Markov Chains</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Markov Chains</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Selection of the Time Step</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>Discrete-Time Markov Chains</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Memoryless Property of Markov Chains</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Markov Chain Transition Matrix</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Markov Matrices</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>3.6.1</td>
<td>The Diagonals of P</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Eigenvalues and Eigenvectors of P</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Constructing the State Transition Matrix P</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Transient Behavior</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>3.9.1</td>
<td>Properties of P^n</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Finding $s(n)$</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Finding $s(n)$ by Expanding $s(0)$</td>
<td>86</td>
<td></td>
</tr>
</tbody>
</table>
3.12 Finding $s(n)$ by Diagonalizing P .. 91
 3.12.1 Comparing Diagonalization with Expansion of $s(0)$ 92
3.13 Expanding P^n in Terms of Its Eigenvalues 94
 3.13.1 Test for Matrix Diagonalizability 102
3.14 Finding $s(n)$ Using the Jordan Canonic Form 103
 3.14.1 Jordan Canonic Form (JCF) ... 103
 3.14.2 Properties of Jordan Canonic Form 106
3.15 Properties of Matrix U .. 107
3.16 P^n Expressed in Jordan Canonic Form 108
3.17 Expressing P^n in Terms of Its Eigenvalues 109
3.18 Finding P^n Using the Z-Transform 111
3.19 Renaming the States ... 111

References ... 121

4 Markov Chains at Equilibrium .. 123
 4.1 Introduction .. 123
 4.2 Markov Chains at Equilibrium ... 123
 4.3 Significance of s at “Steady State” 123
 4.4 Finding Steady-State Distribution Vector s 124
 4.5 Techniques for Finding s .. 125
 4.6 Finding s Using Eigenvector Approach 126
 4.7 Finding s Using Difference Equations 127
 4.8 Finding s Using Z-Transform ... 130
 4.9 Finding s Using Forward- or Back-Substitution 137
 4.10 Finding s Using Direct Techniques 140
 4.11 Finding s Using Iterative Techniques 141
 4.12 Balance Equations ... 142

References ... 149

5 Reducible Markov Chains .. 151
 5.1 Introduction .. 151
 5.2 Definition ... 152
 5.3 Closed and Transient States .. 152
 5.4 Transition Matrix of Reducible Markov Chains 153
 5.5 Composite Reducible Markov Chains 155
 5.6 Transient Analysis .. 157
 5.7 Reducible Markov Chains at Steady-State 161
 5.8 Reducible Composite Markov Chains at Steady-State 164
 5.9 Identifying Reducible Markov Chains 167
 5.9.1 Determining Closed and Transient States 170
 5.10 Identifying Reducible Composite Matrices 172

References ... 182

6 Periodic Markov Chains .. 183
 6.1 Introduction .. 183
 6.2 Definition ... 184
6.3 Types of Periodic Markov Chains ... 185
6.4 The Transition Matrix .. 185
6.5 The Transition Matrix Determinant .. 187
6.6 Transition Matrix Diagonalization ... 188
6.7 Transition Matrix Eigenvalues .. 191
6.8 Transition Matrix Elements ... 195
6.9 Canonic Form for \(P \) ... 196
6.10 Transition Diagram ... 197
6.11 Composite Strongly Periodic Markov Chains 198
6.12 Weakly Periodic Markov Chains ... 202
6.13 Reducible Periodic Markov Chains .. 208
6.14 Transient Analysis ... 211
6.15 Asymptotic Behavior ... 213
6.16 Identification of Markov Chains .. 216
 6.16.1 Nonperiodic Markov chain .. 217
 6.16.2 Strongly periodic Markov chain ... 217
 6.16.3 Weakly periodic Markov chain .. 217
6.17 Problems .. 218
References .. 221

7 Queueing Analysis ... 223
7.1 Introduction ... 223
 7.1.1 Kendall’s Notation ... 224
7.2 Queue Throughput (\(Th \)) .. 225
7.3 Efficiency (\(\eta \)) or Access Probability (\(p_a \)) 226
7.4 Traffic Conservation ... 227
7.5 \(M/M/1 \) Queue .. 227
 7.5.1 \(M/M/1 \) Queue Performance ... 230
7.6 \(M/M/1/B \) Queue ... 233
 7.6.1 \(M/M/1/B \) Queue Performance ... 235
 7.6.2 Performance Bounds on \(M/M/1/B \) Queue 240
7.7 \(M^n/M/1/B \) Queue ... 241
 7.7.1 \(M^n/M/1/B \) Queue Performance 242
 7.7.2 Performance Bounds on \(M^n/M/1/B \) Queue 246
 7.7.3 Alternative Solution Method .. 247
7.8 \(M/M^n/1/B \) Queue ... 248
 7.8.1 \(M/M^n/1/B \) Queue Performance 249
 7.8.2 Performance Bounds on \(M/M^n/1/B \) Queue 252
 7.8.3 Alternative Solution Method .. 253
7.9 The \(D/M/1/B \) Queue ... 253
 7.9.1 Performance of the \(D/M/1/B \) Queue 256
7.10 The \(M/D/1/B \) Queue .. 257
 7.10.1 Performance of the \(M/D/1/B \) Queue 259
7.11 Systems of Communicating Markov Chains 260
 7.11.1 A General Solution for Communicating Markov Chains 263
References .. 268
8 Modeling Traffic Flow Control Protocols .. 269
 8.1 Introduction .. 269
 8.2 The Leaky Bucket Algorithm .. 269
 8.2.1 Modeling the Leaky Bucket Algorithm .. 271
 8.2.2 Single Arrival/Single Departure Model ($M/M/1/B$) 272
 8.2.3 Leaky Bucket Performance ($M/M/1/B$ Case) 274
 8.2.4 Multiple Arrival/Single Departure Model ($M^m/M/1/B$) 276
 8.2.5 Leaky Bucket Performance ($M^m/M/1/B$ Case) 278
 8.3 The Token Bucket Algorithm ... 280
 8.3.1 Modeling the Token Bucket Algorithm .. 282
 8.3.2 Single Arrival/Single Departures Model ($M/M/1/B$) 282
 8.3.3 Token Bucket Performance ($M/M/1/B$ Case) 285
 8.3.4 Multiple Arrivals/Single Departures Model ($M^m/M/1/B$) 288
 8.3.5 Token Bucket Performance (Multiple Arrival/Departure Case) 291
 8.4 Virtual Scheduling (VS) Algorithm .. 295
 8.4.1 Modeling the VS Algorithm ... 296
 8.4.2 VS Protocol Performance ... 298

References .. 301

9 Modeling Error Control Protocols ... 303
 9.1 Introduction .. 303
 9.2 Stop-and-Wait ARQ (SW ARQ) Protocol .. 303
 9.2.1 Modeling Stop-and-Wait ARQ ... 305
 9.2.2 SW ARQ Performance .. 306
 9.3 Go-Back-N (GBN ARQ) Protocol .. 308
 9.3.1 Modeling the GBN ARQ Protocol ... 309
 9.3.2 Using Iterations to Find s .. 312
 9.3.3 Algorithm for Finding s by Iterations ... 313
 9.3.4 GBN ARQ Performance ... 314
 9.4 Selective-Repeat (SR ARQ) Protocol .. 316
 9.4.1 Modeling the SR ARQ Protocol ... 316
 9.4.2 SR ARQ Performance ... 320

References .. 324

10 Modeling Medium Access Control Protocols .. 325
 10.1 Introduction .. 325
 10.2 IEEE Standard 802.1p: Static Priority Protocol 325
 10.2.1 Modeling the IEEE 802.1p: Static Priority Protocol 326
 10.3 ALOHA ... 329
 10.3.1 Modeling the ALOHA Network ... 330
 10.3.2 ALOHA Performance ... 332
 10.4 Slotted ALOHA ... 335
 10.4.1 Modeling the Slotted ALOHA Network .. 335
 10.4.2 Slotted ALOHA Performance ... 337
Contents

10.5 IEEE Standard 802.3 (CSMA/CD) .. 340
 10.5.1 IEEE 802.3 (CSMA/CD) Model Assumptions 341
 10.5.2 IEEE 802.3 (CSMA/CD) State Transition Diagram 342
 10.5.3 IEEE 802.3 (CSMA/CD) Protocol Performance 343

10.6 Carrier Sense Multiple Access-Collision Avoidance (CSMA/CA) 345
 10.6.1 CSMA/CA Model Assumptions 346
 10.6.2 CSMA/CA Protocol Performance 348

10.7 IEEE 802.11: DCF Function for Ad Hoc Wireless LANs 351
 10.7.1 IEEE 802.11: DCF Medium Access Control 351
 10.7.2 IEEE 802.11: DCF Model Assumptions 352
 10.7.3 IEEE 802.11: DCF Protocol Performance 356
 10.7.4 IEEE 802.11/DCF Final Remarks 360

10.8 IEEE 802.11: PCF Function for Infrastructure Wireless LANs 361
 10.8.1 IEEE 802.11: PCF Medium Access Control 362
 10.8.2 IEEE 802.11: Nonpersistent PCF Model Assumptions 362
 10.8.3 IEEE 802.11: Nonpersistent PCF Protocol Performance 364
 10.8.4 IEEE 802.11: 1-Persistent PCF 366
 10.8.5 1-Persistent IEEE 802.11/PCF Performance 369
 10.8.6 1-Persistent IEEE 802.11/PCF User Performance 371

10.9 IEEE 802.11e: Quality of Service Support 374

References ... 381

11 Modeling Network Traffic .. 383
 11.1 Introduction ... 383
 11.2 Flow Traffic Models .. 384
 11.2.1 Modulated Poisson Processes 384
 11.2.2 On–Off Model ... 385
 11.2.3 Markov Modulated Poisson Process 386
 11.2.4 Autoregressive Models 387
 11.3 Continuous-Time Modeling: Poisson Traffic Description 387
 11.3.1 Memoryless Property of Poisson Traffic 389
 11.3.2 Realistic Models for Poisson Traffic 391
 11.3.3 Flow Description ... 392
 11.3.4 Interarrival Time Description 392
 11.3.5 Extracting Poisson Traffic Parameters 394
 11.3.6 Poisson Traffic and Queuing Analysis 395
 11.4 Discrete-Time Modeling: Interarrival Time for Bernoulli Traffic .. 398
 11.4.1 Realistic Models for Bernoulli Traffic 401
 11.4.2 Memoryless Property of Bernoulli Traffic 402
 11.4.3 Realistic Model for Bernoulli Traffic 403
 11.4.4 Extracting Bernoulli Traffic Parameters 404
 11.4.5 Bernoulli Traffic and Queuing Analysis 405
 11.5 Self-Similar Traffic .. 407
 11.6 Self-Similarity and Random Processes 408
 11.7 Heavy-Tailed Distributions ... 409
11.8 Pareto Traffic Distribution ... 409
 11.8.1 Flow Description ... 411
 11.8.2 Interarrival Time Description 411
 11.8.3 Extracting Pareto Interarrival Time Statistics 412
 11.8.4 Pareto Distribution and Queueing Analysis 414
11.9 Traffic Data Rate Modeling with Arbitrary Source Distribution ... 417
11.10 Interarrival Time Traffic Modeling with Arbitrary Source
 Distribution .. 418
11.11 Destination Statistics ... 420
 11.11.1 Uniform Traffic .. 420
 11.11.2 Broadcast Traffic .. 420
 11.11.3 Hot-Spot Traffic ... 421
11.12 Packet Length Statistics ... 422
11.13 Packet Transmission Error Description 423
References .. 428

12 Scheduling Algorithms .. 431
 12.1 Introduction .. 431
 12.1.1 Packet Selection Policy .. 431
 12.1.2 Packet Dropping Policy ... 431
 12.1.3 Fair Sharing Policy ... 432
12.2 Scheduling as an Optimization Problem 432
12.3 Scheduler Location in Switches 432
12.4 Scheduling and Medium Access Control 434
12.5 Scheduler Design Issues ... 434
 12.5.1 Priority .. 435
 12.5.2 Degree of Aggregation .. 435
 12.5.3 Work-Conserving Versus Nonwork-conserving 435
 12.5.4 Packet Drop Policy ... 436
12.6 Rate-Based Versus Credit-Based Scheduling 436
12.7 Scheduler Performance Measures 437
12.8 Analysis of Common Scheduling Algorithms 437
12.9 First-In/First-Out (FIFO) ... 437
 12.9.1 Queuing Analysis of FIFO/FCFS 438
12.10 Static Priority (SP) Scheduler 439
12.11 Round Robin Scheduler (RR) ... 439
 12.11.1 Queuing Analysis for RR 441
12.12 Weighted Round Robin Scheduler (WRR) 444
 12.12.1 Queuing Analysis for WRR 445
12.13 Max–Min Fairness Scheduling 446
12.14 Processor Sharing (PS) ... 448
12.15 Generalized Processor Sharing (GPS) 449
12.16 Fair Queuing (FQ) .. 451
12.17 Packet-by-Packet GPS (PGPS) 454
 12.17.1 Virtual Time Calculation for PGPS/WFQ 454
12.17.2 Finish Number Calculation for PGPS/WFQ 456
12.17.3 Completion Time Calculation for PGPS/WFQ 457
12.18 Frame-Based Fair Queuing (FFQ) 459
12.18.1 System Potential Calculation for FFQ 460
12.18.2 Timestamp Calculation for FFQ 460
12.18.3 Completion Times Calculation for FFQ 461
12.19 Core-Stateless Fair Queuing (CSFQ) 463
12.19.1 Determination of Packet Arrival Rate λ_i 464
12.19.2 Determination of Fair Rate f 465
12.19.3 Bit Dropping Probability p_b 465
12.20 Random Early Detection (RED) 466
12.21 Packet Drop Options .. 467
References ... 473

13 Switches and Routers .. 477
13.1 Introduction .. 477
13.2 Networking .. 479
13.3 Media Access Techniques .. 479
13.3.1 Time Division Multiple Access (TDMA) 480
13.3.2 Space Division Multiple Access (SDMA) 480
13.3.3 Frequency Division Multiple Access (FDMA) 481
13.3.4 Code Division Multiple Access (CDMA) 481
13.4 Circuit and Packet Switching ... 481
13.4.1 Circuit Switching ... 482
13.4.2 Packet Switching .. 483
13.5 Packet Switching Hardware ... 484
13.5.1 End-Node .. 484
13.5.2 Hub ... 485
13.5.3 Bridge .. 485
13.5.4 Switch ... 485
13.5.5 Router .. 486
13.5.6 Gateway .. 486
13.6 Basic Switch Components .. 486
13.6.1 Network Processing Unit (NPU) 487
13.6.2 Control Section ... 488
13.6.3 Datapath Section .. 489
13.6.4 Switch Fabric ... 489
13.6.5 Lookup Table Design ... 489
13.7 Switch Functions ... 490
13.7.1 Routing .. 490
13.7.2 Traffic Management ... 490
13.7.3 Scheduling ... 491
13.7.4 Congestion Control .. 491
13.8 Switch Performance Measures ... 491
13.9 Switch Classifications ... 492
14 Interconnection Networks

14.1 Introduction ... 507
14.2 Network Design Parameters 507
 14.2.1 Network Performance 507
 14.2.2 Network Hardware 508
 14.2.3 Scalability Issues 508
14.3 Classification of Networks 509
14.4 Time Division Multiple Access (TDMA) 509
 14.4.1 Static-Assignment TDMA 509
 14.4.2 Random Assignment TDMA 510
14.5 Space Division Switching 510
14.6 Crossbar Network 511
 14.6.1 Crossbar Network Contention and Arbitration 512
 14.6.2 Analysis of Crossbar Network 512
14.7 Multistage Interconnection Networks 515
 14.7.1 Definitions 517
14.8 Generalized-Cube Network (GCN) 518
 14.8.1 Routing Algorithm for GCN Network 519
 14.8.2 Analysis of GCN Network 521
14.9 The Banyan Network 523
 14.9.1 Routing Algorithm for Banyan Network 524
 14.9.2 Analysis of Banyan Network 524
14.10 Augmented Data Manipulator Network (ADMN) 527
 14.10.1 Routing Algorithms for ADMN Network 529
 14.10.2 First ADMN Routing Algorithm 529
 14.10.3 Second ADMN Routing Algorithm 531
 14.10.4 Third ADMN Routing Algorithm 533
 14.10.5 Analysis of ADMN Network 536
14.11 Improved Logical Neighborhood (ILN) 539
 14.11.1 Routing Algorithm for ILN Network 540
 14.11.2 Path Selection Issues 542
 14.11.3 Analysis of ILN Network 543

References .. 548
15.2 Input Queuing Switch 552
 15.2.1 Congestion in Input Queuing Switch 555
 15.2.2 Performance Bounds on Input Queuing Switch 555
15.3 Output Queuing Switch 558
 15.3.1 Modeling the Input Buffer 559
 15.3.2 Modeling the Output Queue 561
 15.3.3 Putting It All Together 565
 15.3.4 Performance Bounds on Output Queuing Switch 566
15.4 Shared Buffer Switch 569
 15.4.1 Performance Bounds on Shared Buffer Switch 572
15.5 Comparing the Three Switches 574
15.6 Modeling Other Switch Types 576
References .. 578

16 Examples of Switches .. 579
16.1 Introduction .. 579
16.2 Promina 4000 Switch 580
 16.2.1 Input Port Operation 581
 16.2.2 Backplane Bus Operation 581
 16.2.3 Output Port Operation 581
 16.2.4 Promina 4000 Features 582
16.3 The VRQ Switch .. 582
 16.3.1 Input Port Operation 583
 16.3.2 Backplane Bus Operation 583
 16.3.3 Output Port Operation 583
 16.3.4 VRQ Features ... 584
16.4 Comparing Promina 4000 with VRQ Switch 584
16.5 Modeling the VRQ Switch 585
 16.5.1 Analysis of the Input Buffer 587
 16.5.2 Analysis of the Output Queue 589
 16.5.3 Putting It All Together 590
 16.5.4 Performance Bounds on VRQ Switch 591
References .. 595

A Summation of Series ... 597
A.1 Arithmetic Series .. 597
A.2 Geometric Series ... 597
A.3 Arithmetic–Geometric Series 597
A.4 Sums of Powers of Positive Integers 598
A.5 Binomial Series .. 598
 A.5.1 Properties of Binomial Coefficients 599
A.6 Other Useful Series and Formulas 599

B Solving Difference Equations 601
B.1 Introduction .. 601
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2</td>
<td>First-Order Form</td>
<td>601</td>
</tr>
<tr>
<td>B.3</td>
<td>Second-Order Form</td>
<td>602</td>
</tr>
<tr>
<td>B.3.1</td>
<td>Real and Different Roots $\alpha \neq \beta$</td>
<td>603</td>
</tr>
<tr>
<td>B.3.2</td>
<td>Real and Equal Roots $\alpha = \beta$</td>
<td>603</td>
</tr>
<tr>
<td>B.3.3</td>
<td>Complex Conjugate Roots</td>
<td>603</td>
</tr>
<tr>
<td>B.4</td>
<td>General Approach</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>605</td>
</tr>
<tr>
<td>C</td>
<td>Finding $s(n)$ Using the z-Transform</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>611</td>
</tr>
<tr>
<td>D</td>
<td>Vectors and Matrices</td>
<td>613</td>
</tr>
<tr>
<td>D.1</td>
<td>Introduction</td>
<td>613</td>
</tr>
<tr>
<td>D.2</td>
<td>Scalars</td>
<td>613</td>
</tr>
<tr>
<td>D.3</td>
<td>Vectors</td>
<td>613</td>
</tr>
<tr>
<td>D.4</td>
<td>Arithmetic Operations with Vectors</td>
<td>614</td>
</tr>
<tr>
<td>D.5</td>
<td>Linear Independence of Vectors</td>
<td>615</td>
</tr>
<tr>
<td>D.6</td>
<td>Matrices</td>
<td>615</td>
</tr>
<tr>
<td>D.7</td>
<td>Matrix Addition</td>
<td>616</td>
</tr>
<tr>
<td>D.8</td>
<td>Matrix Multiplication</td>
<td>616</td>
</tr>
<tr>
<td>D.9</td>
<td>Inverse of a Matrix</td>
<td>616</td>
</tr>
<tr>
<td>D.10</td>
<td>Null Space of a Matrix</td>
<td>617</td>
</tr>
<tr>
<td>D.11</td>
<td>The Rank of a Matrix</td>
<td>618</td>
</tr>
<tr>
<td>D.12</td>
<td>Eigenvalues and Eigenvectors</td>
<td>618</td>
</tr>
<tr>
<td>D.13</td>
<td>Diagonalizing a Matrix</td>
<td>619</td>
</tr>
<tr>
<td>D.14</td>
<td>Triangularizing a Matrix</td>
<td>619</td>
</tr>
<tr>
<td>D.15</td>
<td>Linear Equations</td>
<td>620</td>
</tr>
<tr>
<td>D.15.1</td>
<td>Gauss Elimination</td>
<td>621</td>
</tr>
<tr>
<td>D.15.2</td>
<td>Gauss–Jordan Elimination</td>
<td>623</td>
</tr>
<tr>
<td>D.15.3</td>
<td>Row Echelon Form and Reduced Row Echelon Form</td>
<td>625</td>
</tr>
<tr>
<td>D.16</td>
<td>Direct Techniques for Solving Systems of Linear Equations</td>
<td>627</td>
</tr>
<tr>
<td>D.16.1</td>
<td>Givens Rotations</td>
<td>627</td>
</tr>
<tr>
<td>D.17</td>
<td>Iterative Techniques</td>
<td>629</td>
</tr>
<tr>
<td>D.17.1</td>
<td>Jacobi Iterations</td>
<td>630</td>
</tr>
<tr>
<td>D.17.2</td>
<td>Gauss–Seidel Iterations</td>
<td>630</td>
</tr>
<tr>
<td>D.17.3</td>
<td>Successive Overrelaxation Iterations</td>
<td>631</td>
</tr>
<tr>
<td>D.18</td>
<td>Similarity Transformation</td>
<td>631</td>
</tr>
<tr>
<td>D.19</td>
<td>Special Matrices</td>
<td>632</td>
</tr>
<tr>
<td>D.19.1</td>
<td>Circulant Matrix</td>
<td>632</td>
</tr>
<tr>
<td>D.19.2</td>
<td>Diagonal Matrix</td>
<td>633</td>
</tr>
<tr>
<td>D.19.3</td>
<td>Echelon Matrix</td>
<td>633</td>
</tr>
<tr>
<td>D.19.4</td>
<td>Identity Matrix</td>
<td>634</td>
</tr>
<tr>
<td>D.19.5</td>
<td>Nonnegative Matrix</td>
<td>634</td>
</tr>
<tr>
<td>D.19.6</td>
<td>Orthogonal Matrix</td>
<td>634</td>
</tr>
<tr>
<td>D.19.7</td>
<td>Plane Rotation (Givens) Matrix</td>
<td>635</td>
</tr>
</tbody>
</table>
Contents

D.19.8 Stochastic (Markov) Matrix .. 635
D.19.9 Substochastic Matrix .. 635
D.19.10 Tridiagonal Matrix .. 636
D.19.11 Upper Hessenberg Matrix 636
Reference .. 636

E Using MATLAB .. 637
E.1 Introduction ... 637
E.2 The Help Command .. 637
E.3 Numbers in MATLAB .. 637
E.4 Basic Arithmetic Operations on Scalars 639
E.5 Variables .. 639
E.6 Arrays ... 640
E.7 Neat Tricks for Arrays .. 640
E.8 Array–Scalar Arithmetic .. 641
E.9 Array–Array Arithmetic ... 642
E.10 The Colon Notation ... 642
E.11 Addressing Arrays .. 643
E.12 Matrix Functions .. 644
E.13 M-Files (Script Files) .. 645
E.14 Function M-Files .. 645
E.15 Statistical Functions .. 646
E.16 System of Linear Equations 648
 E.16.1 A Is Overdetermined ... 648
 E.16.2 A Is Underdetermined ... 649
 E.16.3 b = 0 (Homogeneous Equations) 649
E.17 Solution of Nonlinear Equations 649
E.18 Formatting Output ... 650
Reference .. 650

F Database Design .. 651
F.1 Introduction ... 651
F.2 Hashing .. 651
F.3 Trees ... 653
 F.3.1 Binary Trees .. 653
 F.3.2 Multiway Trees ... 654
 F.3.3 B-Trees ... 655
Reference .. 656

Index ... 657
Analysis of Computer and Communication Networks
Gebali, F.
2008, XXXII, 669 p. 187 illus., Hardcover
ISBN: 978-0-387-74436-0