Contents

1 Overview of Flexible Electronics Technology 1
 I-Chun Cheng and Sigurd Wagner
 1.1 History of Flexible Electronics 1
 1.2 Materials for Flexible Electronics 3
 1.2.1 Degrees of Flexibility 3
 1.2.2 Substrates .. 5
 1.2.3 Backplane Electronics 8
 1.2.4 Frontplane Technologies 12
 1.2.5 Encapsulation .. 16
 1.3 Fabrication Technology for Flexible Electronics 18
 1.3.1 Fabrication on Sheets by Batch Processing 18
 1.3.2 Fabrication on Web by Roll-to-Roll Processing 19
 1.3.3 Additive Printing 20
 1.4 Outlook .. 20
 References .. 20

2 Mechanical Theory of the Film-on-Substrate-Foil Structure:
 Curvature and Overlay Alignment in Amorphous Silicon
 Thin-Film Devices Fabricated on Free-Standing Foil Substrates 29
 Helena Gleskova, I-Chun Cheng, Sigurd Wagner, and Zhigang Suo
 2.1 Introduction .. 29
 2.2 Theory ... 32
 2.2.1 The Built-in Strain ε_{bi} 35
 2.3 Applications .. 36
 2.3.1 Strain in the Substrate, $\varepsilon_s(T_d)$, and the Film, $\varepsilon_f(T_d)$,
 at the Deposition Temperature T_d 36
 2.3.2 Strain in the Substrate, $\varepsilon_s(T_r)$, and the Film, $\varepsilon_f(T_r)$,
 at Room Temperature T_r 38
 2.3.3 Radius of Curvature R of the Workpiece 42
 2.3.4 Strain of the Substrate and the Curvature of the
 Workpiece for a Three-Layer Structure 46
 2.3.5 Experimental Results for a-Si:H TFTs Fabricated on
 Kapton ... 47
3 Low-temperature Amorphous and Nanocrystalline Silicon Materials and Thin-film Transistors

Andrei Sazonov, Denis Striakhilev, and Arokia Nathan

3.1 Introduction .. 53

3.2 Low-temperature Amorphous and Nanocrystalline Silicon Materials 55

3.2.1 Fundamental Issues for Low-temperature Processing ... 55

3.2.2 Low-temperature Amorphous Silicon .. 56

3.2.3 Low-temperature Nanocrystalline Silicon ... 56

3.3 Low-temperature Dielectrics ... 57

3.3.1 Characteristics of Low-temperature Dielectric Thin-film Deposition 57

3.3.2 Low-temperature Silicon Nitride Characteristics ... 57

3.3.3 Low-temperature Silicon Oxide Characteristics ... 58

3.4 Low-temperature Thin-film Transistor Devices ... 59

3.4.1 Device Structures and Materials Processing .. 60

3.4.2 Low-temperature a-Si:H Thin-Film Transistor Device Performance 61

3.4.3 Contacts to a-Si:H Thin-film Transistors .. 62

3.4.4 Low-temperature Doped nc-Si Contacts ... 64

3.4.5 Low-temperature nc-Si TFTs .. 66

3.5 Device Stability .. 67

3.6 Conclusions and Future Prospective ... 70

References .. 70

4 Amorphous Silicon: Flexible Backplane and Display Application 75

Kalluri R. Sarma

4.1 Introduction .. 75

4.2 Enabling Technologies for Flexible Backplanes and Displays 76

4.2.1 Flexible Substrate Technologies ... 76

4.2.2 TFT Technologies for Flexible Backplanes ... 82

4.2.3 Display Media for Flexible Displays (LCD, Reflective-EP, OLED) 89

4.2.4 Barrier Layers ... 90

4.3 Flexible Active Matrix Backplane Requirements for OLED Displays 91

4.3.1 Active Matrix Addressing ... 92

4.4 Flexible AMOLED Displays Using a-Si TFT Backplanes .. 95

4.4.1 Backplane Fabrication Using PEN Plastic Substrates .. 95

4.4.2 Flexible OLED Display Fabrication ... 98

4.4.3 Flexible AMOLED Display Fabrication with Thin-film Encapsulation 100
4.5 Flexible Electrophoretic Displays Fabricated using a-Si TFT Backplanes ... 102
4.6 Outlook for Low-Temperature a-Si TFT for Flexible Electronics Manufacturing .. 102
References ... 105

5 Flexible Transition Metal Oxide Electronics and Imprint Lithography ... 107
Warren B. Jackson
5.1 Introduction .. 107
5.2 Previous Work .. 108
5.3 Properties of Transistor Materials 113
 5.3.1 Semiconductors .. 113
 5.3.2 Dielectrics .. 115
 5.3.3 Contact Materials .. 116
5.4 Device Structures ... 117
5.5 Fabrication on Flexible Substrates 119
 5.5.1 Imprint Lithography ... 120
 5.5.2 Self-Aligned Imprint Lithography 122
 5.5.3 SAIL Transistor Results .. 126
 5.5.4 Summary of Imprint Lithography 127
5.6 Flexible TMO Device Results 128
5.7 Future Problems and Areas of Research 133
 5.7.1 Carrier Density Control .. 134
 5.7.2 Low-Temperature Dielectrics 135
 5.7.3 Etching of TMO Materials 135
 5.7.4 P-type TMO .. 136
 5.7.5 Stability ... 136
 5.7.6 Flexure and Adhesion of TMO 137
 5.7.7 Flexible Fabrication Method Yields 137
5.8 Summary ... 138
References ... 139

6 Materials and Novel Patterning Methods for Flexible Electronics ... 143
William S. Wong, Michael L. Chabinyc, Tse-Nga Ng, and Alberto Salleo
6.1 Introduction ... 143
6.2 Materials Considerations for Flexible Electronics 145
 6.2.1 Overview .. 145
 6.2.2 Inorganic Semiconductors and Dielectrics 145
 6.2.3 Organic Semiconductors and Dielectrics 146
 6.2.4 Conductors .. 149
6.3 Print-Processing Options for Device Fabrication 150
 6.3.1 Overview .. 150
6.3.2 Control of Feature Sizes of Jet-Printed Liquids 151
6.3.3 Jet-Printing for Etch-Mask Patterning 153
6.3.4 Methods for Minimizing Feature Size 154
6.3.5 Printing Active Materials 156

6.4 Performance and Characterization of Electronic Devices 157
6.4.1 Overview .. 157
6.4.2 Bias Stress in Organic Thin-Film Transistors 158
6.4.3 Nonideal Scaling of Short-Channel Organic TFTs 163
6.4.4 Low-Temperature a-Si:H TFT Device Stability 165
6.4.5 Low-temperature a-Si:H p–i–n Devices 167

6.5 Printed Flexible Electronics 170
6.5.1 Overview .. 170
6.5.2 Digital Lithography for Flexible Image Sensor Arrays 170
6.5.3 Printed Organic Backplanes 172

6.6 Conclusions and Future Prospects 176

References .. 176

7 Sheet-Type Sensors and Actuators 183
Takao Someya
7.1 Introduction .. 183
7.2 Sheet-type Image Scanners 184
7.2.1 Imaging Methods 185
7.2.2 Device Structure and Manufacturing Process 186
7.2.3 Electronic Performance of Organic Photodiodes 190
7.2.4 Organic Transistors 191
7.2.5 Photosensor Cells 193
7.2.6 Issues Related to Device Processes: Pixel Stability and Resolution .. 195
7.2.7 A Hierarchal Approach for Slow Organic Circuits 196
7.2.8 The Double-Wordline and Double-Bitline Structure 196
7.2.9 A New Dynamic Second-Wordline Decoder 199
7.2.10 Higher Speed Operation with Lower Power Consumption .. 199
7.2.11 New Applications and Future Prospects 200

7.3 Sheet-Type Braille Displays 201
7.3.1 Manufacturing Process 201
7.3.2 Electronic Performance of Braille Cells 204
7.3.3 Organic Transistor-based SRAM 210
7.3.4 Reading Tests ... 211
7.3.5 Future Prospects 212

7.4 Summary .. 212

References .. 213
8 Organic and Polymeric TFTs for Flexible Displays and Circuits

Michael G. Kane

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>215</td>
</tr>
<tr>
<td>8.2</td>
<td>Important Organic TFT Parameters for Electronic Systems</td>
<td>216</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Field-Effect Mobility</td>
<td>216</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Threshold Voltage</td>
<td>219</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Subthreshold Swing</td>
<td>220</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Leakage Currents</td>
<td>222</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Contact Resistance</td>
<td>222</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Capacitances and Frequency Response</td>
<td>223</td>
</tr>
<tr>
<td>8.2.7</td>
<td>TFT Nonuniformity</td>
<td>225</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Bias-Stress Instability and Hysteresy</td>
<td>225</td>
</tr>
<tr>
<td>8.3</td>
<td>Active Matrix Displays</td>
<td>227</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Liquid Crystal and Electrophoretic Displays</td>
<td>228</td>
</tr>
<tr>
<td>8.4</td>
<td>Active Matrix OLED Displays</td>
<td>236</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Introduction</td>
<td>236</td>
</tr>
<tr>
<td>8.5</td>
<td>Using Organic TFTs for Electronic Circuits</td>
<td>242</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Thin-Film Transistor Circuits</td>
<td>242</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Frequency Limitations of OTFTs</td>
<td>246</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Integrated Display Drivers</td>
<td>247</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Radio Frequency Identification Tags</td>
<td>248</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusion</td>
<td>256</td>
</tr>
</tbody>
</table>

References | 256 |

9 Semiconducting Polythiophenes for Field-Effect Transistor Devices in Flexible Electronics: Synthesis and Structure Property Relationships

Martin Heeney and Iain McCulloch

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>261</td>
</tr>
<tr>
<td>9.2</td>
<td>Polymerization of Thiophene Monomers</td>
<td>264</td>
</tr>
<tr>
<td>9.2.1</td>
<td>General Considerations</td>
<td>264</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Synthetic Routes for the Preparation of Thiophene Polymers</td>
<td>264</td>
</tr>
<tr>
<td>9.3</td>
<td>Poly(3-Alkylthiophenes)</td>
<td>273</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Electrical Properties</td>
<td>275</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Thin-film Device Processing and Morphology</td>
<td>276</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Doping and Oxidative Stability</td>
<td>277</td>
</tr>
<tr>
<td>9.4</td>
<td>Polythiophene Structural Analogues</td>
<td>279</td>
</tr>
<tr>
<td>9.5</td>
<td>Thienothiophene Polymers</td>
<td>286</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Poly(Thieno(2,3-b)Thiophenes)</td>
<td>286</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Poly(Thieno(3,2-b)Thiophenes)</td>
<td>288</td>
</tr>
<tr>
<td>9.6</td>
<td>Summary</td>
<td>292</td>
</tr>
</tbody>
</table>

References | 293 |
10 Solution Cast Films of Carbon Nanotubes for Transparent Conductors and Thin Film Transistors 297
David Hecht and George Gruner
10.1 Introduction: Nanoscale Carbon for Electronics, the Value Proposition .. 297
10.2 Carbon NT Film Properties 298
 10.2.1 Carbon Nanotubes: The Building Blocks 298
 10.2.2 Carbon Nanotube Network as an Electronic Material . 298
 10.2.3 Electrical and Optical Properties of NT Films 300
 10.2.4 Doping and Chemical Functionalization 304
10.3 Fabrication Technologies 305
 10.3.1 Solubilization ... 306
 10.3.2 Deposition ... 306
10.4 Carbon NT Films as Conducting and Optically Transparent Material .. 309
 10.4.1 Network Properties: Sheet Conductance and Optical Transparency .. 309
 10.4.2 Applications: ITO Replacement 312
 10.4.3 Challenges and the Path Forward 312
10.5 TFTs with Carbon Nanotube Conducting Channels 313
 10.5.1 Device Characteristics 314
 10.5.2 Device Parameters 316
 10.5.3 Challenges and the Path Forward 323
10.6 Conclusions .. 324
References ... 325

11 Physics and Materials Issues of Organic Photovoltaics 329
Shawn R. Scully and Michael D. McGehee
11.1 Introduction .. 329
11.2 Basic Operation ... 329
 11.2.1 Photocurrent ... 331
 11.2.2 Dark Current ... 331
11.3 Organic and Hybrid Solar Cell Architectures 332
11.4 Materials .. 334
11.5 Light Absorption .. 334
11.6 Exciton Harvesting ... 338
 11.6.1 Effects of Disorder 340
 11.6.2 Extrinsic Defects 344
 11.6.3 Measuring Exciton Harvesting 344
 11.6.4 Approaches to Overcome Small Diffusion Lengths 347
11.7 Exciton Dissociation .. 349
11.8 Dissociating Geminates Pairs 351
11.9 Heterojunction Energy Offsets 355
11.10 Charge Transport and Recombination 357
 11.10.1 Diffusion-Limited Recombination 359
11.10.2 Interface-Limited (Back Transfer Limited) Recombination .. 360
11.10.3 Measurements Relevant for Extracting Charge 363
11.11 Nanostructures ... 364
11.12 Efficiency Limits and Outlook .. 367
References .. 368

12 Bulk Heterojunction Solar Cells for Large-Area PV Fabrication on Flexible Substrates .. 373
C. Waldauf, G. Dennler, P. Schilinsky, and C. J. Brabec
12.1 Introduction and Motivation .. 373
12.1.1 Photovoltaics ... 373
12.1.2 Technology Overview .. 374
12.1.3 Motivation for Large-Area, Solution-Processable Photovoltaics .. 375
12.2 The Concept of Bulk Heterojunction Solar Cells 377
12.2.1 Basics of Organic Solar Cell Materials 377
12.2.2 Fundamentals of Photovoltaics 378
12.2.3 Understanding and Optimization of BHJ Composites 385
12.3 Challenges for Large-Area Processing 401
12.3.1 Production Scheme ... 401
12.3.2 Encapsulation of Flexible Solar Cells 404
12.4 Conclusions ... 408
References .. 409

13 Substrates and Thin-Film Barrier Technology for Flexible Electronics .. 413
Ahmet Gün Eral, Min Yan, and Anil R. Duggal
13.1 Introduction ... 413
13.2 Barrier Requirements ... 414
13.2.1 Generic Requirements .. 416
13.2.2 Substrate-Specific Requirements 417
13.3 Thin-Film Barrier Technology ... 419
13.3.1 Historical Background .. 419
13.3.2 Permeation Measurement Techniques 420
13.3.3 Permeation Through Thin-Film Barriers 426
13.4 Barrier–Device Integration ... 437
13.4.1 Substrate and Barrier Compatibility with OLEDs 437
13.4.2 Thin-Film Encapsulation .. 440
13.5 Concluding Remarks .. 442
References .. 442

Index ... 451
Flexible Electronics
Materials and Applications
Wong, W.S.; Salleo, A. (Eds.)
2009, XVIII, 462 p. 245 illus., Hardcover