<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Study of Nanowire Growth Mechanisms: VLS and Si Assisted</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hyun D. Park and S.M. Prokes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>One-Dimensional SiC Nanostructures: Synthesis and Properties</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Weimin Zhou, Yafei Zhang, Xiaoming Niu, and Guoquan Min</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Self-Organized Nanowire Formation of Si-Based Materials</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Hideo Kohno</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Controlled Formation of Individually Addressable Si Nanowire Arrays</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>for Device Integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ying-Lan Chang and Sung Soo Yi</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Physical Properties of GaN Nanotubes as Revealed by Computer Simulation</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Zhiguo Wang, Fei Gao, Xiaotao Zuo, and William J. Weber</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Optical Anisotropy of Semiconductor Nanowires</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Jaime Gómez Rivas, Otto L. Muskens, Magnus T. Borgström, Silke L. Diedenhofen, and Erik P.A.M. Bakkers</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FDTD Spectroscopic Study of Metallic Nanostructures:</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>On the Pertinent Employment of Tabulated Permittivities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thierry Laroche and Alexandre Vial</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Electromagnetic Nanowire Resonances for Field-Enhanced Spectroscopy</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Annemarie Pucci, Frank Neubrech, Javier Aizpurua, Thomas Cornelius, and Marc Lamy de la Chapelle</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Designing the Carbon Nanotube Field Effect Transistor Through</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Contact Barrier Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byoung-Kye Kim, Hyo-Suk Kim, Hye-Mi So, Noejung Park, Suklyun Hong, Ju-Jin Kim, and Jeong-O Lee</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>10</td>
<td>Low Dimensional Nanomaterials for Spintronics</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Jinlong Yang and Hongjun Xiang</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>One-Dimensional Phase-Change Nanomaterials for Information Storage Applications</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Xuhui Sun, Bin Yu, Garrick Ng, and M. Meyyappan</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ordering of Self-Assembled Quantum Wires on InP(001) Surfaces</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>W. Lei, Y. H. Chen, and Z. G. Wang</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>323</td>
</tr>
</tbody>
</table>
One-Dimensional Nanostructures
Wang, Z.M. (Ed.)
2008, XII, 330 p., Hardcover
ISBN: 978-0-387-74131-4