Contents

Preface xiii
Acknowledgments xvii
Foreword xix
Notation xxi
Introduction xxiii

1. SYSTEM-THEORETICAL DESCRIPTION OF OPEN PHYSICAL PROCESSES 1

1 Reduction of Nonlinear Control Systems to Bilinear Realization 3
1.1 Equivalence of Control Systems 3
1.2 Lie Algebras, Lie Groups, and Representations 4
1.3 Selection of Mathematical Models 6
1.4 Bilinear Logic-Dynamical Realization of Nonlinear Control Systems 10

2 Global Bilinearization of Nonlinear Systems 12

3 Identification of Bilinear Control Systems 19

4 Bilinear and Nonlinear Realizations of Input-Output Maps 20
4.1 Systems on Lie Groups 20
4.2 Bilinear Realization of Nonlinear Systems 22
4.3 Approximation of Nonlinear Systems by Bilinear Systems 23

5 Controllability of Bilinear Systems 25

6 Observability of Systems on Lie Groups 27
6.1 Observability and Lie Groups 27
6.2 Algorithms of Observability 33
6.3 Examples 36
6.4 Decoupling Problems 38

7 Invertibility of Control Systems 40
7.1 Right-Invariant Control Systems 40
7.2 Invertibility of Right-Invariant Systems 43
7.3 Left-Inverses for Bilinear Systems 49

8 Invertibility of Discrete Bilinear Systems 56
8.1 Discrete Bilinear Systems and Invertability 56
8.2 Construction of Inverse Systems 57
8.3 Controllability of Inverse Systems 58

9 Versal Models and Bilinear Systems 59
9.1 General Characteristics of Versal Models 59
9.2 Algorithms 60

10 Notes and Sources 64

2. CONTROL OF BILINEAR SYSTEMS 65
1 Optimal Control of Bilinear Systems 66
1.1 Optimal Control Problem 66
1.2 Reduction of Control Problem to Equivalent Problem for Bilinear Systems 67
1.3 Optimal Control of Bilinear Systems 70
1.4 On the Solution of the Euler–Lagrange Equation 72

2 Stability of Bilinear Systems 74
2.1 Normed Vector Space 75
2.2 Continuous Bilinear Systems 77
2.3 Discrete Bilinear Systems 79

3 Adaptive Control of Bilinear Systems 82
3.1 Control of Fixed Points 82
3.2 Control of Limit Cycles 88
3.3 Variations in the Control Dynamics 89

4 Notes and Sources 91

3. BILINEAR SYSTEMS AND NONLINEAR ESTIMATION THEORY 93
1 Nonlinear Dynamical Systems and Adaptive Filters 94
1.1 Filtration Problems 94
1.2 Problem Statement 97
1.3 Preliminaries on Nonlinear and Bilinear Lattice Models 98
5. SUPERCONDUCTING LEVITATION AND BILINEAR SYSTEMS 177
 1 Introduction 177
 2 Stability and Levitation 179
 3 Dynamics of Magnetically Levitated Systems 182
 4 Controlled Levitation and Bilinear Dynamics 191
 4.1 Statement of the Problem 191
 4.2 Optimal Synthesis of Chaotic Dynamics 193
 4.3 Chaotic Dynamics of Levitated Probes 195
 4.4 Asymptotic Stability of Measurements 196
 4.5 Synthesizing the Adaptive Filter 198
 4.6 Estimation of Gravitational Signals 200
 4.7 Numerical Analysis of the Estimation Model 200
 4.8 Construction of the Sensor 202
 5 Nonlinear Dynamics and Chaos 203
 6 Notes and Sources 205

6. OPTIMIZATION AND CONTROL OF QUANTUM-MECHANICAL PROCESSES 207
 1 Control of Quantum Systems 210
 1.1 Evolution of Quantum Systems 210
 1.2 Finite Control of Quantum Systems 214
 1.3 Amplitude-Frequency Control 216
 1.4 Resonance Control of a Three-Level System 218
 2 Simulation of Quantum Control Systems 219
 2.1 Mathematical Models of Quantum Objects 220
 2.2 Dynamics of Quantum Systems and Control 221
 2.3 Physical Constraints 223
 2.4 Hierarchy of Time Scales 224
 3 Representation of the Interaction 226
 3.1 Approximation of the Model 228
 3.2 Quantum Bilinear Dynamics 229
 3.3 Hamiltonian Dynamics 232
 4 The Bellman Principle and Quantum Systems 233
 4.1 Deterministic Optimal Control 234
 4.2 The Bellman-Hamilton–Jacobi Theory and Differential Forms 236
 4.3 Stochastic Optimal Control and Schrödinger Equations 239
3.2 Reconstruction of the Parameter Spaces of the Human Brain 329
4 Global Optimization Approaches to Reconstruction of Dynamical Systems Related to Epileptic Seizures 338
 4.1 Nonlinear Dynamics and Epilepsy 338
 4.2 Reconstructing Equations of the Epileptic Brain from Experimental Data 339
 4.3 Quadratic Programming Problem 341
5 Stochastic and Deterministic Dynamics in Electroetinograms 343
 5.1 Experimental Data 343
 5.2 Methods for the Analysis of Time Series 345
 5.3 Numerical Results 348
6 Notes and Sources 351

References 353
Index 369
Optimization and Control of Bilinear Systems
Theory, Algorithms, and Applications
Pardalos, P.; Yatsenko, V.A.
2008, XXVI, 370 p. 40 illus., Hardcover