Contents

Preface xiii
Acknowledgments xvii
Foreword xix
Notation xxi
Introduction xxiii

1. SYSTEM-THEORETICAL DESCRIPTION OF OPEN PHYSICAL PROCESSES 1
 1 Reduction of Nonlinear Control Systems to Bilinear Realization 3
 1.1 Equivalence of Control Systems 3
 1.2 Lie Algebras, Lie Groups, and Representations 4
 1.3 Selection of Mathematical Models 6
 1.4 Bilinear Logic-Dynamical Realization of Nonlinear Control Systems 10
 2 Global Bilinearization of Nonlinear Systems 12
 3 Identification of Bilinear Control Systems 19
 4 Bilinear and Nonlinear Realizations of Input-Output Maps 20
 4.1 Systems on Lie Groups 20
 4.2 Bilinear Realization of Nonlinear Systems 22
 4.3 Approximation of Nonlinear Systems by Bilinear Systems 23
 5 Controllability of Bilinear Systems 25
 6 Observability of Systems on Lie Groups 27
 6.1 Observability and Lie Groups 27
 6.2 Algorithms of Observability 33
Contents

6.3 Examples 36
6.4 Decoupling Problems 38

7 Invertibility of Control Systems 40
7.1 Right-Invariant Control Systems 40
7.2 Invertibility of Right-Invariant Systems 43
7.3 Left-Inverses for Bilinear Systems 49

8 Invertibility of Discrete Bilinear Systems 56
8.1 Discrete Bilinear Systems and Invertability 56
8.2 Construction of Inverse Systems 57
8.3 Controllability of Inverse Systems 58

9 Versal Models and Bilinear Systems 59
9.1 General Characteristics of Versal Models 59
9.2 Algorithms 60

10 Notes and Sources 64

2. CONTROL OF BILINEAR SYSTEMS 65
1 Optimal Control of Bilinear Systems 66
1.1 Optimal Control Problem 66
1.2 Reduction of Control Problem to Equivalent Problem for Bilinear Systems 67
1.3 Optimal Control of Bilinear Systems 70
1.4 On the Solution of the Euler–Lagrange Equation 72

2 Stability of Bilinear Systems 74
2.1 Normed Vector Space 75
2.2 Continuous Bilinear Systems 77
2.3 Discrete Bilinear Systems 79

3 Adaptive Control of Bilinear Systems 82
3.1 Control of Fixed Points 82
3.2 Control of Limit Cycles 88
3.3 Variations in the Control Dynamics 89

4 Notes and Sources 91

3. BILINEAR SYSTEMS AND NONLINEAR ESTIMATION THEORY 93
1 Nonlinear Dynamical Systems and Adaptive Filters 94
1.1 Filtration Problems 94
1.2 Problem Statement 97
1.3 Preliminaries on Nonlinear and Bilinear Lattice Models 98
Contents

1.4 Adaptive Filter for Lattice Systems 100
1.5 Identification of Bilinear Lattice Models 103
1.6 A Generalization for Nonlinear Lattice Models 109
1.7 Estimation of the State Vector of CA3 Region 111
1.8 Detection and Prediction of Epileptic Seizures 115

2 Optimal Estimation of Signal Parameters Using Bilinear Observations 118
2.1 Estimation Problem 118
2.2 Invertibility of Continuous MS and Estimation of Signal Parameters 119
2.3 Estimation of Parameters of an Almost Periodic Signal Under Discrete Measurements 124
2.4 Neural Network Estimation of Signal Parameters 127
2.5 Finite-Dimensional Bilinear Adaptive Estimation 129
2.6 Example 130

3 Bilinear Lattices and Nonlinear Estimation Theory 131
3.1 Lattice Systems and DMZ Equations 131
3.2 Structure of Estimation Algebra 135

4 Notes and Sources 138

4. CONTROL OF DYNAMICAL PROCESSES AND GEOMETRICAL STRUCTURES 139
1 Geometric Structures 141
1.1 Metric Spaces 142
1.2 Optimal Control 143
1.3 Identification of Nonlinear Agents and Yang–Mills Fields 145
1.4 The Estimation Algebra of Nonlinear Filtering Systems 146
1.5 Estimation Algebra and Identification Problems 147

2 Lie Groups and Yang–Mills Fields 149
3 Control of Multiagent Systems and Yang–Mills Representation 152
4 Dynamic Systems, Information, and Fiber Bundles 154
5 Fiber Bundles, Multiple Agents, and Observability 164
5.1 Smooth Nonlinear Systems 166
5.2 Minimality and Observability 168

6 Notes and Sources 176
5. SUPERCONDUCTING LEVITATION AND BILINEAR SYSTEMS
 1 Introduction 177
 2 Stability and Levitation 179
 3 Dynamics of Magnetically Levitated Systems 182
 4 Controlled Levitation and Bilinear Dynamics 191
 4.1 Statement of the Problem 191
 4.2 Optimal Synthesis of Chaotic Dynamics 193
 4.3 Chaotic Dynamics of Levitated Probes 195
 4.4 Asymptotic Stability of Measurements 196
 4.5 Synthesizing the Adaptive Filter 198
 4.6 Estimation of Gravitational Signals 200
 4.7 Numerical Analysis of the Estimation Model 200
 4.8 Construction of the Sensor 202
 5 Nonlinear Dynamics and Chaos 203
 6 Notes and Sources 205

6. OPTIMIZATION AND CONTROL OF QUANTUM-MECHANICAL PROCESSES 207
 1 Control of Quantum Systems 210
 1.1 Evolution of Quantum Systems 210
 1.2 Finite Control of Quantum Systems 214
 1.3 Amplitude-Frequency Control 216
 1.4 Resonance Control of a Three-Level System 218
 2 Simulation of Quantum Control Systems 219
 2.1 Mathematical Models of Quantum Objects 220
 2.2 Dynamics of Quantum Systems and Control 221
 2.3 Physical Constraints 223
 2.4 Hierarchy of Time Scales 224
 3 Representation of the Interaction 226
 3.1 Approximation of the Model 228
 3.2 Quantum Bilinear Dynamics 229
 3.3 Hamiltonian Dynamics 232
 4 The Bellman Principle and Quantum Systems 233
 4.1 Deterministic Optimal Control 234
 4.2 The Bellman-Hamilton–Jacobi Theory and Differential Forms 236
 4.3 Stochastic Optimal Control and Schrödinger Equations 239
Contents

5 Classical and Quantum Controlled Lattices: Self-Organization, Optimization and Biomedical Applications 241
 5.1 Hamiltonian Models of Cellular Dynamatons 243
 5.2 Self-Organization of Neural Networks 247
 5.3 Bilinear Lattices and Epileptic Seizures 252
 5.4 Quantum Model of Neural Networks 257

6 Notes and Sources 259

7. MODELING AND GLOBAL OPTIMIZATION IN BIOMOLECULAR SYSTEMS 261
 1 Control Dynamics and Photosynthetic Centers 262
 1.1 Mathematical Models 262
 1.2 Kolmogorov Equations and Bilinear Dynamical Systems 264
 1.3 Modeling and Experimental Results 273
 2 Bilinear Models of Biological Membranes 278
 2.1 Controlled Model of the Channel 280
 2.2 Generalized Equation of Diffusion 287
 2.3 Structure of a Functioning Channel 290
 3 Intelligent Biosensors 296
 3.1 Ecological Monitoring and Living Objects 296
 3.2 Experimental Results 297
 3.3 Identification of a Bilinear Sensitive Element 303
 3.4 Separation of Pollutant Characteristics by Neural Chips 307
 4 Notes and Sources 312

8. MODELING AND ANALYSIS OF BILINEAR SYSTEMS 313
 1 Global Reconstructing of Models 314
 1.1 Modeling without Hidden Variables 314
 1.2 Modeling with Hidden Variables 316
 1.3 Controlling Chaos 322
 2 Nonlinear Dynamics of Sea Clutter and Detection of Small Targets 324
 2.1 Non-Gaussian Signals and Backscattering Process 324
 2.2 Sea Clutter Attractor 325
 2.3 Mathematical Model of Sea Clutter 327
 3 Global Reconstruction and Biomedical Applications 328
 3.1 Nonparametric Models for Epilepsy Data 328
Contents

3.2 Reconstruction of the Parameter Spaces of the Human Brain 329

4 Global Optimization Approaches to Reconstruction of Dynamical Systems Related to Epileptic Seizures 338
4.1 Nonlinear Dynamics and Epilepsy 338
4.2 Reconstructing Equations of the Epileptic Brain from Experimental Data 339
4.3 Quadratic Programming Problem 341

5 Stochastic and Deterministic Dynamics in Electroetinograms 343
5.1 Experimental Data 343
5.2 Methods for the Analysis of Time Series 345
5.3 Numerical Results 348

6 Notes and Sources 351

References 353

Index 369
Optimization and Control of Bilinear Systems
Theory, Algorithms, and Applications
Pardalos, P.; Yatsenko, V.A.
2008, XXVI, 370 p. 40 illus., Hardcover