Contents

Preface ... xiii

1 Introduction .. 1
 1.1 Brief History of the Calculus of Variations and Optimal Control ... 2
 1.2 The Brachistochrone Problem .. 4
 1.3 Optimal Economic Growth ... 5
 1.3.1 Ramsey’s 1928 Model ... 5
 1.3.2 Neoclassical Optimal Growth .. 6
 1.4 Regional Allocation of Public Investment .. 7
 1.4.1 The Dynamics of Capital Formation 8
 1.4.2 Population Dynamics ... 10
 1.4.3 Technological Change ... 12
 1.4.4 Criterion Functional and Final Form of the Model 13
 1.5 Dynamic Telecommunications Flow Routing 14
 1.5.1 Assumptions and Notation .. 14
 1.5.2 Flow Propagation Mechanism ... 15
 1.5.3 Path Delay Operators .. 17
 1.5.4 Dynamic System Optimal Flows ... 18
 1.5.5 Additional Constraints ... 18
 1.5.6 Final Form of the Model ... 20
 1.6 Brief History of Dynamic Games ... 20
 1.7 Dynamic User Equilibrium for Vehicular Networks 21
 1.8 Dynamic Oligopolistic Network Competition 22
 1.8.1 Notation ... 23
 1.8.2 Extremal Problems and the Nash Game 23
 1.8.3 Differential Variational Inequality Formulation 26
 1.9 Revenue Management and Nonlinear Pricing 27
 1.9.1 The Decision Environment .. 27
 1.9.2 The Role of Denial-of-Service Costs and Refunds 29
 1.9.3 Firms’ Extremal Problem ... 29
 1.10 The Material Ahead ... 30

List of References Cited and Additional Reading 31
3.2 Calculus of Variations Examples ... 97
 3.2.1 Example of Fixed Endpoints in the Calculus of Variations 98
 3.2.2 Example of Free Endpoints in the Calculus of Variations . . 99
 3.2.3 The Brachistochrone Problem 100
3.3 Continuous-Time Optimal Control .. 103
 3.3.1 Necessary Conditions for Continuous-Time
 Optimal Control ... 105
 3.3.2 Necessary Conditions with Fixed Terminal
 Time, No Terminal Cost, and No Terminal Constraints 109
 3.3.3 Necessary Conditions When the Terminal
 Time Is Free .. 111
 3.3.4 Necessary Conditions for Problems with Interior
 Point Constraints .. 113
 3.3.5 Dynamic Programming and Optimal Control 114
 3.3.6 Second-Order Variations in Optimal Control 117
 3.3.7 Singular Controls .. 119
 3.3.8 Sufficiency in Optimal Control 120
3.4 Optimal Control Examples ... 124
 3.4.1 Simple Example of the Minimum Principle 124
 3.4.2 An Example Involving Singular Controls 127
 3.4.3 Approximate Solution of Optimal Control
 Problems by Time Discretization 130
 3.4.4 A Two-Point Boundary-Value Problem 130
 3.4.5 Example with Free Terminal Time 134
3.5 The Linear-Quadratic Optimal Control Problem 138
 3.5.1 LQP Optimality Conditions 138
 3.5.2 The HJPDE and Separation of Variables for the LQP 140
 3.5.3 LQP Numerical Example .. 141
 3.5.4 Another LQP Example .. 142
3.6 Exercises ... 144

List of References Cited and Additional Reading 145

4 Infinite Dimensional Mathematical Programming 147
 4.1 Elements of Functional Analysis 148
 4.1.1 Notation and Elementary Concepts 148
 4.1.2 Topological Vector Spaces 149
 4.1.3 Convexity ... 157
 4.1.4 The Hahn-Banach Theorem 158
 4.1.5 Gâteaux Derivatives and the Gradient of a Functional 159
 4.1.6 The Fréchet Derivative 162
 4.2 Variational Inequalities and Constrained Optimization
 of Functionals ... 163
 4.3 Continuous-Time Optimal Control 165
 4.3.1 Analysis Based on the G-Derivative 166
 4.3.2 Variational Inequalities as Necessary Conditions 169
4.4 Optimal Control with Time Shifts ... 174
 4.4.1 Some Preliminaries ... 175
 4.4.2 The Optimal Control Problem of Interest 176
 4.4.3 Change of Variable .. 176
 4.4.4 Necessary Conditions for Time-Shifted Problems 177
 4.4.5 A Simple Abstract Example 183

4.5 Derivation of the Euler-Lagrange Equation 185

4.6 Kuhn-Tucker Conditions for Hilbert Spaces 186

4.7 Mathematical Programming Algorithms 190
 4.7.1 The Steepest Descent Algorithm 190
 4.7.2 The Projected Gradient Algorithm 198
 4.7.3 Penalty Function Methods 204
 4.7.4 Example of the Steepest Descent Algorithm 206
 4.7.5 Example of the Gradient Projection Algorithm 209
 4.7.6 Penalty Function Example 214

4.8 Exercises ... 216

List of References Cited and Additional Reading 217

5 Finite Dimensional Variational Inequalities and Nash Equilibria 219
 5.1 Some Basic Notions .. 220
 5.2 Nash Equilibria and Normal Form Games 220
 5.3 Some Related Nonextremal Problems 222
 5.3.1 Nonextremal Problems and Programs 223
 5.3.2 Kuhn-Tucker Conditions for Variational Inequalities 224
 5.3.3 Variational Inequality and Complementarity Problem Generalizations ... 226
 5.3.4 Relationships Among Nonextremal Problems 226
 5.3.5 Variational Inequality Representation of Nash Equilibrium .. 231
 5.3.6 User Equilibrium .. 231
 5.3.7 Existence and Uniqueness 235
 5.4 Sensitivity Analysis of Variational Inequalities 237
 5.5 The Diagonalization Algorithm 239
 5.5.1 The Algorithm .. 241
 5.5.2 Convergence of Diagonalization 242
 5.5.3 A Nonnetwork Example of Diagonalization 243
 5.6 Gap Function Methods for VI (F, F) 248
 5.6.1 Gap Function Defined .. 248
 5.6.2 The Auslender Gap Function 249
 5.6.3 Fukushima-Auchmuty Gap Functions 250
 5.6.4 The D-Gap Function .. 251
 5.6.5 Gap Function Numerical Example 253
 5.7 Other Algorithms for VI (F, F) 255
 5.7.1 Methods Based on Differential Equations 256
 5.7.2 Fixed-Point Methods .. 257
5.7.3 Generalized Linear Methods ..258
5.7.4 Successive Linearization with Lemke’s Method259
5.8 Computing Network User Equilibria260
5.9 Exercises ..263
List of References Cited and Additional Reading263

6 Differential Variational Inequalities and Differential Nash Games267
6.1 Infinite-Dimensional Variational Inequalities268
6.2 Differential Variational Inequalities271
 6.2.1 Problem Definition ..271
 6.2.2 Naming Conventions ..272
 6.2.3 Regularity Conditions for $DVI(F, f, \Psi, U, x_0, t_0, t_f)$273
 6.2.4 Necessary Conditions ...274
 6.2.5 Existence ..276
 6.2.6 Nonlinear Complementarity Reformulation276
6.3 Differential Nash Games ..277
 6.3.1 Differential Nash Equilibrium277
 6.3.2 Generalized Differential Nash Equilibrium281
6.4 Fixed-Point Algorithm ..282
 6.4.1 Formulation ..282
 6.4.2 The Unembellished Algorithm283
 6.4.3 Solving the SubProblems ...286
 6.4.4 Numerical Example ..287
6.5 Descent in Hilbert Space with Gap Functions289
 6.5.1 Gap Functions in Hilbert Spaces289
 6.5.2 D-gap Equivalent Optimal Control Problem292
 6.5.3 Numerical Example ..297
6.6 Differential Variational Inequalities with Time Shifts298
 6.6.1 Necessary Conditions ...300
 6.6.2 Fixed-Point Formulation and Algorithm303
 6.6.3 Time-Shifted Numerical Examples305
6.7 Exercises ..310
List of References Cited and Additional Reading311

7 Optimal Economic Growth ..313
7.1 Alternative Models of Optimal Economic Growth314
 7.1.1 Ramsey’s 1928 Model ...314
 7.1.2 Optimal Growth with the Harrod-Domar Model315
 7.1.3 Neoclassical Optimal Growth316
7.2 Optimal Regional Growth Based on the Harrod-Domar Model318
 7.2.1 Tax Rate as the Control ..325
 7.2.2 Tax Rate and Public Investment as Controls328
 7.2.3 Equal Public and Private Savings Ratios333
 7.2.4 Sufficiency ..339
8 Production Planning, Oligopoly and Supply Chains353
 8.1 The Aspatial Price-Taking Firm354
 8.1.1 Optimal Control Problem for Aspatial Perfect
 Competition ...355
 8.1.2 Numerical Example of Aspatial Perfect Competition355
 8.1.3 The Aspatial Price Taking Firm with a
 Terminal Constraint on Inventory358
 8.2 The Aspatial Monopolistic Firm362
 8.2.1 Necessary Conditions for the Aspatial Monopoly363
 8.2.2 Numerical Example364
 8.3 The Monopolistic Firm in a Network Economy367
 8.3.1 The Network Firm’s Extremal Problem367
 8.3.2 Discrete-Time Approximation370
 8.3.3 Numerical Example371
 8.3.4 Solution by Discrete-Time Approximation373
 8.3.5 Solution by Continuous-Time Gradient Projection373
 8.4 Dynamic Oligopolistic Spatial Competition376
 8.4.1 Some Background and Notation377
 8.4.2 The Firm’s Objective and Constraints378
 8.4.3 The DVI Formulation380
 8.4.4 Discrete-Time Approximation384
 8.4.5 A Comment About Path Variables386
 8.4.6 Numerical Example386
 8.4.7 Interpretation of Numerical Results389
 8.5 Competitive Supply Chains395
 8.5.1 Inverse Demands ..395
 8.5.2 Producers’ Extremal Problem396
 8.5.3 Retailers’ Extremal Problem399
 8.5.4 Supply Chain Extremal Problem400
 8.5.5 The Differential Variational Inequality401
 8.5.6 The DVI ...404
 8.5.7 Numerical Example405
 8.6 Exercises ...408
List of References Cited and Additional Reading409
Dynamic User Equilibrium

9.1 Some Background

9.2 Arc Dynamics
- Dynamics Based on Arc Exit Flow Functions
- Dynamics with Controlled Entrance and Exit Flows
- Cell Transmission Dynamics
- Dynamics Based on Arc Exit Time Functions
- Constrained Dynamics Based on Proper Flow Propagation Constraints

9.3 The Measure-Theoretic Nature of DUE

9.4 The Infinite-Dimensional Variational Inequality Formulation

9.5 When Delays Are Exogenous

9.6 When the Delay Operators Are Endogenous
- Nested Operators
- The Problem Setting
- Analysis
- Computation with Endogenous Delay Operators

9.7 Conclusions

9.8 Exercises

Dynamic Pricing and Revenue Management

10.1 Dynamic Pricing with Fixed Inventories
- Infinite-Dimensional Variational Inequality Formulation
- Restatement of the Isoperimetric Constraints
- Differential Variational Inequality Formulation
- Numerical Example

10.2 Revenue Management as an Evolutionary Game
- Assumptions and Notation
- Demand Dynamics
- Constraints
- The Firm’s Optimal Control Problem
- Differential Quasivariational Inequality Formulation
- Numerical Example

10.3 Network Revenue Management
- Discrete-Time Notation
- Demand Functions
- Denial-of-Service Costs and Refunds
- Firms’ Extremal Problem
- Market Equilibrium Problem as a Quasivariational Inequality
- Numerical Example

10.4 Exercises

List of References Cited and Additional Reading