11.10 Low Power Validation

Having successfully implemented our multi-voltage power gated design that meets all power and performance targets, it is now necessary to validate the integrity of the design. Specifically we want to ensure that the low power intent provided at the start of the implementation process has been successfully implemented in the final design.

We validate functionality and the integrity of our low power implementation using three methods:

- Gate level logic simulation
- Equivalence checking
- Rule-based methods

Clearly gate level simulation of our final design can tell us if the design still remains functional with the low power structures. Specifically, we can validate that the design:

- resets cleanly at startup
- can be placed into various sleep modes
- behaves appropriately during shutdown
- powers-up successfully after shutdown

Formal equivalence checking tools can prove that the gate level netlist is equivalent to the original RTL plus UPF code.

A rule-base tool can tell us that the power structure of the final gate level netlist makes sense. It can validate that the isolation cells and level shifters are placed in the correct domains, and that all nets requiring isolation or level shifting have the appropriate cells in place. It can check that cells that required always on power – such as retention registers, isolation cells, and buffers of power control signals – do, in fact, have the appropriate supplies. Finally, we can use these tools to find situations where there are redundant isolation cells or level shifters.

11.11 Manufacturing Test

In a typical voltage scaled system, various parts of the design will be running at reduced power supply levels. During the implementation process, the design can be optimized at these voltage levels thereby yielding an overall lower power design that meets the needs of the system application. However, in most manufacturing test situations, the design will be tested at nominal supply rail voltage levels which will cause
Low Power Methodology Manual
For System-on-Chip Design
Flynn, D.; Aitken, R.; Gibbons, A.; Shi, K.
2007, XVI, 300 p., Hardcover