Contents

Preface .. v

1 Difficulties of Monitoring a Defect at Its Origin and Its Dataware Features .. 1

1.1 Features of Defect Origin and Difficulties of Its Monitoring 1
1.2 Reasons, Types, and Stages of Defect Origin Evolution in Technical Objects ... 2
1.3 Sensors and Features of Dataware for Monitoring a Defect at Its Origin ... 6
1.4 Models of Signals Obtained as Output of Sensors at the Initial Stage of a Defect’s Origin ... 10
1.5 Difficulties of Monitoring a Defect at Its Origin by Traditional Technologies .. 12
1.6 Factors Influencing the Adequacy of Monitoring a Defect’s Origin by Methods of Correlation Analysis ... 14
1.7 Factors Affecting the Adequacy of Monitoring a Defect’s Origin by Methods of Spectral Analysis .. 16
1.8 Influence of Signal Filtration on the Results of Monitoring a Defect’s Origin .. 19
1.9 Influences of Traditional Methods of Choosing the Sampling Step on the Adequacy of Monitoring a Defect’s Origin 21

2 Position-Binary Technology of Monitoring Defect at Its Origin 23

2.1 Specific Properties of Periodic Effect Objects 23
2.2 Position-Binary Technology of Analyzing Noisy Signals Obtained as Outputs of Sensors of Technical Objects 24
2.3 Opportunities of Using Position-Binary Technology for Monitoring Technical Conditions of Industrial Objects 28
2.4 Position-Selective Adaptive Sampling of Noisy Signals 32
2.5 Position-Binary Detecting a Defect Origin by Using Noise as a Data Carrier ... 37
3 Technology of Digital Analysis of Noise as a Carrier of Information About the Beginning of a Defect’s Origin ... 43

3.1 Features of Analyzing Noise as a Data Carrier 43
3.2 Problems of Monitoring a Defect’s Origin by Considering Noise as a Data Carrier ... 45
3.3 Methods of Determining the Noise Variance for the Case of Absence of Correlation Between Legitimate Signal and Noise ... 47
3.4 Digital Technology of Analyzing Noise and Legitimate Signal in Case of Absence of Correlation ... 52
3.5 Digital Technology of Determining the Noise Variance in Case of Availability of Correlation Between Legitimate Signal and Noise .. 58
3.6 Digital Technology of Separating Noise Samples and Legitimate Signal, and Determining Estimates of Its Statistical Characteristics ... 66
3.7 Algorithms for Determining the Distribution Law of Noise and the Correlation Coefficient .. 68
3.8 Algorithm for Determining the Arithmetic Mean Relative Error of Samples of Noisy Signals Caused by Noise 72
3.9 Digital Technology for Determining Information Signs of Monitoring a Defect’s Origin When the Classical Conditions Are Not Fulfilled ... 74
3.10 Digital Identification of a Defect’s Origin by Considering Noise as a Data Carrier ... 77

4 Robust Correlation Monitoring of a Defect at Its Origin 83

4.1 Problem of Monitoring a Defect at Its Origin Using Technology of Correlation Analysis of Signal Received as the Output of Sensors ... 83
4.2 Necessity of Providing Robustness of Correlation Monitoring of a Defect at Its Origin ... 84
4.3 Robust Method of Improving Estimates of Auto-Correlation Functions in Monitoring a Defect’s Origin ... 88
4.4 Robust Method of Improving Cross-Correlation Function Estimates ... 94
4.5 Technology of Determining the Value of Providing the Robustness of Estimates of Auto- and Cross-Correlation Functions ... 100
4.6 Robust Algorithms of Improving Estimates of Auto- and Cross-Correlation Functions .. 107
5 Spectral Monitoring of a Defect’s Origin ...113

5.1 Necessity of Providing Robustness During Spectral Monitoring of a Defect’s Origin ..113

5.2 Reasons the Difference Between Positive and Negative Errors Caused by Noises Appears When Spectral Analysis of Signals Obtained from the Sensors Is Used ...117

5.3 Algorithms for Calculating Errors of Coefficients of Fourier Series of Signals Obtained from Sensors119

5.4 Algorithms for Determining Robust Estimations of Fourier Series Coefficients in Spectral Monitoring of a Defect’s Origin ...122

5.5 Technology of Spectral Analysis of Noise in Monitoring a Defect’s Origin ...124

5.6 Algorithms of Determining Coefficients of Fourier Series of a Legitimate Signal in Using Spectral Monitoring of a Defect’s Origin ..129

6 The Digital Technology of Forecasting Failures by Considering Noise as a Data Carrier ..135

6.1 The Problem of Digital Forecasting Failures by Considering Noise as a Data Carrier ..135

6.2 Algorithms for Forecasting the Transition of an Object into the Failure State by Considering Noise as a Data Carrier137

6.3 Positional-Binary Technology of Detecting Initial Stage of Change to the Technical State of Objects..........................141

6.4 Technology of Forecasting Failures by Considering Noise as a Data Carrier ..144

6.5 Diagnosing and Forecasting the Change to the State of Sea Platforms ..148

6.6 Telemetric Information System of Forecasting Accidents During Drilling by Considering Noise as a Data Carrier152

6.7 Technology and System of Monitoring a Defect’s Origin in the Most Vulnerable Modules of Objects of Thermoelectric Power Stations and Nuclear Power Plants157

7 The Technology of Monitoring a Defect’s Origin by Considering Noise as a Data Carrier ..163

7.1 Specific Properties of the Technology of Monitoring a Defect’s Origin by Considering Noise as a Data Carrier163
7.2 Digital System of Monitoring a Defect’s Origin by Considering Noise as a Data Carrier .. 167
7.3 Robust Information System for Forecasting Accidents on Compressor Stations of Main Gas-Oil Pipelines 170
7.4 Digital City System of Monitoring the Technical State of Socially Important Objects by Considering Noise as a Data Carrier ... 175
7.5 Digital Technology and the System of Receiving Seismic Information from Deep Beds of the Earth and Monitoring the Origin of Anomalous Seismic Processes by Considering Noise as a Data Carrier .. 180
7.6 The Technology of Monitoring the Origin of Vascular Pathology of the Human Organism .. 189
7.7 Correlation Indicators of a Defect’s Origin .. 192
7.8 Technologies of Indication of a Defect’s Origin by Considering Noise as a Data Carrier ... 204
7.9 Spectral Indicators of a Defect’s Origin 207
7.10 Position-Binary Indicators of a Defect’s Origin 209
7.11 Recommended Digital Technologies for Monitoring a Defect’s Origin .. 210

References .. 217

Index ... 221
Digital Noise Monitoring of Defect Origin
Aliev, T.
2007, XII, 224 p., Hardcover
ISBN: 978-0-387-71753-1