2 Basic Learning Principles of Artificial Neural Networks

2.1 Introduction

Artificial neural networks (ANNs), as an emerging discipline, studies or emulates the information processing capabilities of neurons of the human brain. It uses a distributed representation of the information stored in the network, and thus resulting in robustness against damage and corresponding fault tolerance (Shadbolt and Taylor, 2002). Usually, a neural network model takes an input vector X and produces output vector Y. The relationship between X and Y is determined by the network architecture. There are many forms of network architecture inspired by the neural architecture of the human brain. The neural network generally consists of one input layer, one output layer, and one or more hidden layers, as illustrated in Fig. 2.1.

![Image](image)

Fig. 2.1. The basic architecture of neural network

In the neural network model, it is widely accepted that a three-layer back propagation neural network (BPNN) with an identity transfer function in the output unit and logistic functions in the middle-layer units can approximate any continuous function arbitrarily well given a sufficient amount of middle-layer units (White, 1990). Furthermore, in the practical applications, about 70 percent of all problems are usually trained on a
three-layer back-propagation network, as revealed by Chapter 1. The backpropagation learning algorithm, designed to train a feed-forward network, is an effective learning technique used to exploit the regularities and exceptions in the training sample.

A major advantage of neural networks is their ability to provide flexible mapping between inputs and outputs. The arrangement of the simple units into a multilayer framework produces a map between inputs and outputs that is consistent with any underlying functional relationship regardless of its “true” functional form. Having a general map between the input and output vectors eliminates the need for unjustified priori restrictions that are needed in conventional statistical and econometric modeling. Therefore, a neural network is often viewed as a “universal approximator”, i.e. a flexible functional form that can approximate any arbitrary function arbitrarily well, given sufficient middle-layer units and properly adjusted weights (Hornik et al., 1989; White, 1990). Both theoretical proof and empirical applications have confirmed that a three-layer BP neural network (BPNN) model with an identity transfer function in the output unit and logistic functions in the middle-layer units is adequate for foreign exchange rates forecasting, which is our research focus in this book. Therefore, a three-layer BP neural network model with identity activation function in the output unit and logistic function in the middle-layer units is used throughout this book except specially specified.

2.2 Basic Structure of the BPNN Model

Consider a three-layer BPNN, which has \(p \) nodes of the input layer, \(q \) nodes of the hidden layer and \(k \) nodes of the output layer. Mathematically, the basic structure of the BPNN model is described by (see derivation later)

\[
\hat{Y}(t + 1) = F_2[V^T(t)F_1(W(t)X(t))]
\]

(2.1)

where \(X = (x_0, x_1, \ldots, x_p)^T \in \mathbb{R}^{(p+1)\times 1} \) are the inputs of BPNN, \(\hat{Y} = (\hat{y}_0, \hat{y}_1, \ldots, \hat{y}_k)^T \in \mathbb{R}^{k\times 1} \) is the outputs of the BPNN, \(W = \begin{pmatrix} w_{10} & w_{11} & \cdots & w_{1p} \\ w_{20} & w_{21} & \cdots & w_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ w_{q0} & w_{q1} & \cdots & w_{qp} \end{pmatrix} = (W_0, W_1, \ldots, W_p) \in \mathbb{R}^{q \times (p+1)} \).
2.2 Basic Structure of the BPNN Model

\[V = \begin{bmatrix} v_{10} & v_{20} & \cdots & v_{k0} \\ v_{11} & v_{21} & \cdots & v_{k1} \\ \vdots & \vdots & \ddots & \vdots \\ v_{1q} & v_{2q} & \cdots & v_{kq} \end{bmatrix} = (V_1, V_2, \ldots, V_k) \in \mathbb{R}^{(q+1) \times k}, \]

\[F_i(W(t)X(t)) = \left(F_i(\text{net}_1(t)) \; F_i(\text{net}_2(t)) \; \cdots \; F_i(\text{net}_q(t)) \right)^T \in \mathbb{R}^{(q+1) \times 1}, \quad \text{net}_i(t) = \sum_{j=0}^{p} w_{ij}(t)x_j(t), \quad i = 0, 1, \ldots, q, \] is the output of the \(i \)-th hidden node. \(w_{io}(t), \; i = 1, \ldots, q, \) are the bias of the hidden nodes; \(v_{ij}(t), \; i = 1, \ldots, q, \; j = 1, \ldots, k, \) are the weights form the hidden node \(i \) to the output node \(j \); \(v_{io}(t) \) is the bias of the output node; \(F_1(\bullet) \) and \(F_2(\bullet) \) are the activation function, which can be any nonlinear function as long as they are continuous, bounded and differentiable. Typically, \(F_1(\bullet) \) is a sigmoidal or hyperbolic tangent function and \(t \) is a time factor. For convenience, a symmetric hyperbolic tangent function (i.e., \(f_1(x) = \tanh(u_0^{-1}x) \) where \(u_0 \) is the shape factor of the activation function) is used as the activation function of the hidden layer (Yu et al., 2005a, b).

Derivation of Equation (2.1):

\[
\hat{Y}(t+1) = \begin{bmatrix} \hat{y}_1(t+1) \\ \hat{y}_2(t+1) \\ \vdots \\ \hat{y}_k(t+1) \end{bmatrix} = \begin{bmatrix} f_2[\sum_{i=1}^{q} f_1(\sum_{j=0}^{p} w_{ij}(t)x_j(t) + w_{i0}(t))v_{li}(t) + v_{i0}(t)] \\ f_2[\sum_{i=1}^{q} f_1(\sum_{j=0}^{p} w_{ij}(t)x_j(t) + w_{i0}(t))v_{li}(t) + v_{i0}(t)] \\ \vdots \\ f_2[\sum_{i=1}^{q} f_1(\sum_{j=0}^{p} w_{ij}(t)x_j(t) + w_{i0}(t))v_{li}(t) + v_{i0}(t)] \end{bmatrix} = \begin{bmatrix} f_2[\sum_{i=0}^{q} f_1(\text{net}_i)v_{li}(t)] \\ f_2[\sum_{i=0}^{q} f_1(\text{net}_i)v_{li}(t)] \\ \vdots \\ f_2[\sum_{i=0}^{q} f_1(\text{net}_i)v_{li}(t)] \end{bmatrix} = \begin{bmatrix} f_2(V_1^TF_1(W(t)X(t))) \\ f_2(V_2^TF_1(W(t)X(t))) \\ \vdots \\ f_2(V_k^TF_1(W(t)X(t))) \end{bmatrix} = F_2[V^T(t)F_1(W(t)X(t))]
\]

where \(f_1 \) is the activation function of the hidden nodes and \(f_2 \) is the activation function of output nodes and \(t \) is a time factor.

Through estimating model parameter vector or network connection weights \((W, V)\) via BPNN training and learning, we can realize the corresponding...
modeling tasks, such as function approximation, pattern recognition, and time series prediction.

2.3 Learning Process of the BPNN Algorithm

The ability to learn and improve its performance from examples is the neural network’s fundamental trait. For BPNN, it is a class of supervised learning algorithm in the form of the neural network associative memory. Usually, the back-propagation learning mechanism consists of two phases: forward-propagation and back-propagation phase, as Tam and Kiang (1992) reported.

Suppose we have n samples. Each is described by $X_i = (x_{i1}, x_{i2}, \ldots, x_{ip})$ and $Y_i = (y_{i1}, y_{i2}, \ldots, y_{ik})$ where X_i is an input vector, Y_i is a target output vector and $1 \leq i \leq n$.

In the first phase (forward-propagation phase), X_i is fed into the input layer, and an output $(\hat{y}_{i1}, \hat{y}_{i2}, \ldots, \hat{y}_{ik})$ is generated based on the current weight vector W. The objective is to minimize an error function E defined as

$$E = \sum_{i=1}^{n} \sum_{j=1}^{k} \frac{(y_{ij} - \hat{y}_{ij})^2}{2}$$ \hspace{1cm} (2.2)

Through changing W so that all input vectors are correctly mapped to their corresponding output vectors.

In the second phase (back-propagation phase), a gradient descent in the weight space, W, is performed to locate the optimal solution. The direction and magnitude change Δw_{ij} can be computed as

$$\Delta w_{ij} = -\frac{\partial E}{\partial w_{ij}} \varepsilon$$ \hspace{1cm} (2.3)

where $0 < \varepsilon < 1$ is a learning parameter controlling the algorithm’s convergence rate.

The total squared error calculated by Equation (2.1) is propagated back, layer by layer, from the output units to the input units in the second phase. Weight adjustments are determined on the way of propagation at each level. The two phases are executed during each iteration of the back-propagation algorithm until E converges.
2.4 Weight Update Formulae of the BPNN Algorithm

Actually, the model parameter vector or neural network weights \((W, V)\) (as defined by Section 2.2) can be obtained by minimizing iteratively a cost function, \(E(X: W, V)\). In general, \(E(X: W, V)\) is a sum of the error squares cost function with \(k\) output nodes and \(n\) training pairs or patterns, that is,

\[
E(X : W, V) = \frac{1}{2} \sum_{j=1}^{n} \sum_{e=1}^{k} e_{ij}^2 = \frac{1}{2} \sum_{j=1}^{n} e_j^T e_j
\]

(2.4)

where \(y_j\) is the \(j\)th actual value and \(\hat{y}_j(X : W, V)\) is the \(j\)th estimated value.

Given the time factor \(t\), Equation (2.4) can be rewritten as

\[
E(t) = \frac{1}{2} \sum_{j=1}^{n} \sum_{e=1}^{k} e_{ij}^2 (t) = \frac{1}{2} \sum_{j=1}^{n} e_j^T (t) e_j (t)
\]

(2.5)

where \(e_j(t) = [e_{1j}(t), e_{2j}(t), \cdots, e_{kj}(t)]^T \in \mathbb{R}^{k \times 1}\), \(j = 1, 2, \cdots, n\), \(y_j(t)\) and \(\hat{y}_j(t)\) are the \(j\)th actual value and predicted value at time \(t\), respectively.

By applying the gradient descent rule to the cost function \(E(t)\) (as shown in Equation (2.5)) and considering Equation (2.1), we can obtain the weight increment formulae with respect to \(W\) and \(V\), respectively (see proof later).

\[
\Delta W(t) = -\eta(t) \nabla_W E(t) = \eta(t) \sum_{j=1}^{n} F_{1(j)}^T V F_{2(j)}^T e_j x_j^T
\]

(2.6)

\[
\Delta V(t) = -\eta(t) \nabla_V E(t) = \eta(t) \sum_{j=1}^{n} F_{1(j)} e_j^T F_{2(j)}^T
\]

(2.7)

where \(\eta\) is the learning rate, \(\nabla\) is the gradient operator, \(\Delta W(t)\) and \(\Delta V(t)\) are the weight adjustment increments at iteration \(t\), respectively.

Suppose \(\Delta W(t) = W(t) - W(t-1)\) and \(\Delta V(t) = V(t) - V(t-1)\), then the weights update formulae for standard BP learning algorithm with respect to \(W\) and \(V\) are given by, respectively

\[
W(t) = W(t-1) + \eta(t) \sum_{j=1}^{n} F_{1(j)}^T V F_{2(j)}^T e_j x_j^T
\]

(2.8)

\[
V(t) = V(t-1) + \eta(t) \sum_{j=1}^{n} F_{1(j)} e_j^T F_{2(j)}^T
\]

(2.9)
where Δ is the incremental operator, $F'_{1(j)} = \text{diag} [f'_1(\text{net}_0), f'_1(\text{net}_1), \ldots, f'_1(\text{net}_q)] \in \mathbb{R}^{q \times q}$, $F'_{2(j)} = \text{diag} [f'_2(\text{net}_0), f'_2(\text{net}_1), \ldots, f'_2(\text{net}_k)] \in \mathbb{R}^{k \times k}$, $f'_i(\text{net}_i) = \frac{\partial f_i(\text{net}_i)}{\partial \text{net}_i}, i = 1, 2, \ldots, q$, $f'_i(\text{net}_i) = f'_i(\text{net}_i) = \frac{\partial f_i(\text{net}_i)}{\partial \text{net}_i}, i = 1, 2, \ldots, k$, $v_i = [v_{i1}, v_{i2}, \ldots, v_{iq}]^T \in \mathbb{R}^{q \times 1}, i = 1, 2, \ldots, k$.

In order to prove Equations (2.8) and (2.9), three lemmas must be firstly introduced (Sha and Bajic, 2002).

Lemma 2.1

The derivative of activation function $F_i(WX)$ in hidden layer with respect to the vector Net or WX is given by

$$F'_i(WX) = \text{diag} [f'_1(\text{net}_0), f'_1(\text{net}_1), \ldots, f'_1(\text{net}_q)]$$

$$= \frac{1}{u_0} \begin{bmatrix} 1 - f^2_1(\text{net}_0) & 0 & \cdots & 0 \\ 0 & 1 - f^2_1(\text{net}_1) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 - f^2_1(\text{net}_q) \end{bmatrix}$$

$$= \frac{1}{u_0} \begin{bmatrix} 1 - f^2_1(W_0X) & 0 & \cdots & 0 \\ 0 & 1 - f^2_1(W_1X) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 - f^2_1(W_qX) \end{bmatrix}$$

where $F_i(WX) = [f_i(\text{net}_0), f_i(\text{net}_1), \ldots, f_i(\text{net}_q)]^T$, $F'_i(WX)$ is the Jacobian matrix of $F_i(WX)$, $f'_i(\text{net}_i) = \frac{\partial f_i(\text{net}_i)}{\partial \text{net}_i}, i = 0, 1, \ldots, q$, $f_i(x) = \tanh(u_0^{-1}x)$ and its derivative $f'_i(x) = u_0^{-1}[1 - f^2_i(x)]$.
2.4 Weight Update Formulae of the BPNN Algorithm

Proof:
Due to $f_i(x) = \tanh(u_0^{-1}x)$ and its derivative $f'_i(x) = u_0^{-1}[1 - f_i^2(x)]$, $net_i = W_i X$, $F_i(WX) = [f_i(net_0) f_i(net_1) \ldots f_i(net_q)]^T$, the derivative of activation function $F_i(WX)$ in hidden layer with respect to the vector Net or WX can be calculated as

$$\begin{align*}
F'_i(WX) &= \left[\frac{\partial f_i(net_1)}{\partial net_1} \ldots \frac{\partial f_i(net_q)}{\partial net_q} \right] = \left[\frac{\partial f_i(net_1)}{\partial net_1} \ldots 0 \\ \frac{\partial f_i(net_q)}{\partial net_1} \ldots \frac{\partial f_i(net_q)}{\partial net_q} \right] \\
&= \begin{bmatrix}
 f'_i(net_1) & \ldots & 0 \\
 \ldots & \ldots & \ldots \\
 0 & \ldots & f'_i(net_q)
\end{bmatrix}
= \text{diag}[f'_i(net_1) \ldots f'_i(net_q)]
\end{align*}$$

$$\begin{align*}
&= \frac{1}{u_0^2} \begin{bmatrix}
 1 - f_i^2(net_1) & 0 & \ldots & 0 \\
 0 & 1 - f_i^2(net_2) & \ldots & 0 \\
 \ldots & \ldots & \ldots & \ldots \\
 0 & 0 & \ldots & 1 - f_i^2(W_q X)
\end{bmatrix}
= \frac{1}{u_0} \begin{bmatrix}
 1 - f_i^2(W_1 X) & 0 & \ldots & 0 \\
 0 & 1 - f_i^2(W_2 X) & \ldots & 0 \\
 \ldots & \ldots & \ldots & \ldots \\
 0 & 0 & \ldots & 1 - f_i^2(W_q X)
\end{bmatrix}
\end{align*}$$

Lemma 2.2

The partial derivative of the single hidden output $V^T F_i(WX)$ with respect to the weight matrix W is given by

$$\frac{\partial [V^T F_i(WX)]}{\partial W} = F'_i(WX) VX^T$$

Proof:

$$\frac{\partial [V^T F_i(WX)]}{\partial W} = \left[\frac{\partial [\sum_{j=0}^{q} v_j f_i(\sum_{j=0}^{p} w_{ij} x_j)]}{\partial w_{ij}} \right]_{q \times (p+1)} = [v_j f'_i(net_j) x_j]_{q \times (p+1)}$$
2 Basic Learning Principles of Artificial Neural Networks

\[
\begin{bmatrix}
v_1 f_1'(net_1)x_0 & v_1 f_1'(net_1)x_1 & \ldots & v_1 f_1'(net_1)x_p \\
v_2 f_1'(net_2)x_0 & v_2 f_1'(net_2)x_1 & \ldots & v_2 f_1'(net_2)x_p \\
\vdots & \vdots & \ddots & \vdots \\
v_q f_1'(net_q)x_0 & v_q f_1'(net_q)x_1 & \ldots & v_q f_1'(net_q)x_p \\
\end{bmatrix}
\]

\[
v_1 \begin{bmatrix} x_0 & x_1 & \ldots & x_p \end{bmatrix}
\]

\[
= F'_1(WX) VX^T
\]

Lemma 2.3

The partial derivative of the single hidden output \(V^T F'_1(WX) \) with respect to the weight vector \(V \) is given by

\[
\frac{\partial [V^T F'_1(WX)]}{\partial V} = F'_1(WX)
\]

Proof:

\[
\frac{\partial [V^T F'_1(WX)]}{\partial V} = \left[\frac{\partial \left[\sum_{i=0}^{q} v_i f_i'(net_i) \right]}{\partial v_i} \right]_{(q+1)\times 1}
\]

\[
= [f'_i(net_i)]_{(q+1)\times 1} = F'_1(WX)
\]

Using Lemmas 2.1-2.3, we can prove the weight update formula in the following. First of all, we derive the gradient of \(E(t) \) with respect to weights \(W \) and \(V \).

With reference to Equation (2.5) and Lemmas 2.1 and 2.2, the gradient of \(E(t) \) with respect to \(W \) can be obtained by applying the steepest descent method to \(E(t) \),

\[
\nabla_W E(t) = \frac{\partial E(t)}{\partial W(t)} = \sum_{j=1}^{n} \sum_{i=1}^{k} e_{ij}(t) \frac{\partial e_{ij}(t)}{\partial W(t)} = -\sum_{i=1}^{k} e_{ij}(t) \frac{\partial \hat{y}_{ij}(t)}{\partial W(t)}
\]

\[
= -\sum_{j=1}^{n} \sum_{i=1}^{k} e_{ij}(t) F'_{2(j)} \left[v_i^T F'_1(WX_j) \right] \frac{\partial [v_i^T F'_1(WX_j)]}{\partial W(t)}
\]

\[
= -\sum_{j=1}^{n} \sum_{i=1}^{k} e_{ij} F'_{2(j)} F'_{1(j)} VX^T = -\sum_{j=1}^{n} F'_{1(j)} \left(\sum_{i=1}^{k} e_{ij} F'_{2(j)} V_i \right) x_j^T
\]
\[F_j = -\sum_{j=1}^{n} F_j \]

\[
\begin{bmatrix}
e_{1j} f_1' v_{11} + e_{2j} f_2' v_{21} + \cdots + e_{kj} f_k' v_{k1} \\
e_{1j} f_1' v_{12} + e_{2j} f_2' v_{22} + \cdots + e_{kj} f_k' v_{k2} \\
\vdots \\
e_{1j} f_1' v_{1q} + e_{2j} f_2' v_{2q} + \cdots + e_{kj} f_k' v_{kq}
\end{bmatrix} x_j^T
\]

\[
\begin{bmatrix}
v_{11} & v_{21} & \cdots & v_{k1} \\
v_{12} & v_{22} & \cdots & v_{k2} \\
\vdots & \vdots & \cdots & \vdots \\
v_{1q} & v_{2q} & \cdots & v_{kq}
\end{bmatrix}
\begin{bmatrix}
e_{1j} f_1' \\
e_{2j} f_2' \\
\vdots \\
e_{kj} f_k'
\end{bmatrix}
\]

\[
\begin{bmatrix}
f_1' (v_{11}) & 0 & \cdots & 0 \\
0 & f_2'(v_{21}) & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & f_k'(v_{k1})
\end{bmatrix}
\begin{bmatrix}
e_{1j} \\
e_{2j} \\
\vdots \\
e_{kj}
\end{bmatrix}
\]

\[= -\sum_{j=1}^{n} F_j V F_2 e_j x_j^T \]

Similarly, the gradient of \(E(t) \) with respect to \(V \) can also be obtained

\[
\nabla_V E(t) = \frac{\partial E(t)}{\partial V(t)} = \sum_{j=1}^{n} \sum_{i=1}^{k} e_j(t) \frac{\partial e_j(t)}{\partial V(t)} = -\sum_{j=1}^{n} \sum_{i=1}^{k} e_j(t) \frac{\partial \hat{y}_j(t)}{\partial V(t)}
\]

\[
\begin{bmatrix}
\partial \hat{y}_j \\
\partial v_{10} & \partial \hat{y}_j \\
\partial v_{20} & \partial \hat{y}_j & \cdots & \partial \hat{y}_j \\
\partial \hat{y}_j & \partial \hat{y}_j & \cdots & \partial \hat{y}_j
\end{bmatrix}
\]

\[= -\sum_{j=1}^{n} \sum_{i=1}^{k} e_j(t)
\]

\[
\begin{bmatrix}
\partial \hat{y}_j \\
\partial v_{11} \\
\partial \hat{y}_j & \partial \hat{y}_j \\
\partial \hat{y}_j & \partial \hat{y}_j & \cdots & \partial \hat{y}_j
\end{bmatrix}
\]

\[= -\sum_{j=1}^{n} \sum_{i=1}^{k} e_j(t)
\]
\[\Delta W(t) = -\eta(t) \nabla_W E(t) = -\eta(t) \sum_{j=1}^{N} F_{1(j)}' V F_{2(j)}' e_j x_j^T \]

\[\Delta V(t) = -\eta(t) \nabla_V E(t) = -\eta(t) \sum_{j=1}^{n} F_{1(j)} e_j^T F_{2(j)}' \]

Therefore, the weight increments \(\Delta W(t) \) and \(\Delta V(t) \) can be obtained from the above derivation processes, i.e.,

\[\Delta W(t) = -\eta(t) \nabla_W E(t) = \eta(t) \sum_{j=1}^{N} F_{1(j)}' V F_{2(j)}' e_j x_j^T \]

\[\Delta V(t) = -\eta(t) \nabla_V E(t) = \eta(t) \sum_{j=1}^{n} F_{1(j)} e_j^T F_{2(j)}' \]

Assume \(\Delta W(t) = W(t) - W(t-1) \) and \(\Delta V(t) = V(t) - V(t-1) \), then the weights update rule (i.e., Equations (2.8) and (2.9)) for standard BP learning algorithm with respect to \(W \) and \(V \) can be obtained, i.e.,

\[W(t) = W(t-1) + \eta(t) \sum_{j=1}^{n} F_{1(j)}' V F_{2(j)}' e_j x_j^T \]

\[V(t) = V(t-1) + \eta(t) \sum_{j=1}^{n} F_{1(j)} e_j^T F_{2(j)}' \]
Using the weight update formulae (i.e., Equations (2.8) and (2.9)), we can train BPNN to perform the corresponding tasks, such as data mining, function approximation and financial time series forecasting.

2.5 Conclusions

In this chapter, some preliminaries about back-propagation neural networks are presented. First of all, a basic architecture of three-layer BPNN model is described in the form of matrix. Then we briefly introduce a basic learning process including forward propagation phase and back-propagation phase for BPNN. Based upon the basic structure and learning process, the weight update rules are derived in terms of steepest gradient descent algorithm. Using the weight update rules, some data analysis tasks are performed.

However, in the neural network applications, an important process, data preparation process, is often neglected by researchers and business users. Although data preparation in neural network data analysis is important, some existing literature about the neural network data preparation are scattered, and there is no systematic study about data preparation for neural network data analysis (Yu et al., 2006a). Therefore, this book tries to develop an integrated data preparation scheme for neural network data analysis, which will be described in the next chapter.
Foreign-Exchange-Rate Forecasting with Artificial Neural Networks
Yu, L.; Wang, S.; Lai, K.K.
2007, XXIII, 316 p., Hardcover