List of Figures ix
List of Tables xi
Preface xiii
Notation xvii

Part I INTRODUCTION

1. INTRODUCTION
 1.1 Characteristics of Inventory Systems 3
 1.2 Brief Historical Overview of Inventory Theory 5
 1.3 Examples of Markovian Demand Models 12
 1.4 Contributions 15
 1.5 Plan of the Book 16

Part II DISCOUNTED COST MODELS

2. DISCOUNTED COST MODELS WITH BACKORDERS 21
 2.1 Introduction 21
 2.2 Review of the Related Literature 22
 2.3 Formulation of the Model 23
 2.4 Dynamic Programming and Optimal Feedback Policy 26
 2.5 Optimality of (s, S)-type Ordering Policies 31
 2.6 Nonstationary Infinite Horizon Problem 33
 2.7 Cyclic Demand Model 37
 2.8 Constrained Models 37
 2.9 Concluding Remarks and Notes 39
3. DISCOUNT COST MODELS WITH POLYNOMIALLY GROWING SURPLUS COST

3.1 Introduction
3.2 Formulation of the Model
3.3 Dynamic Programming and Optimal Feedback Policy
3.4 Nonstationary Discounted Infinite Horizon Problem
3.5 Optimality of (s, S)-type Ordering Policies
3.6 Stationary Infinite Horizon Problem
3.7 Concluding Remarks and Notes

4. DISCOUNTED COST MODELS WITH LOST SALES

4.1 Introduction
4.2 Formulation of the Model
4.3 Optimality of (s, S)-type Ordering Policies
4.4 Extensions
4.5 Numerical Results
4.6 Concluding Remarks and Notes

Part III AVERAGE COST MODELS

5. AVERAGE COST MODELS WITH BACKORDERS

5.1 Introduction
5.2 Formulation of the Model
5.3 Discounted Cost Model Results from Chapter 2
5.4 Limiting Behavior as the Discount Factor Approaches 1
5.5 Vanishing Discount Approach
5.6 Verification Theorem
5.7 Concluding Remarks and Notes

6. AVERAGE COST MODELS WITH POLYNOMIALLY GROWING SURPLUS COST

6.1 Formulation of the Problem
6.2 Behavior of the Discounted Cost Model with Respect to the Discount Factor
6.3 Vanishing Discount Approach
6.4 Verification Theorem
6.5 Concluding Remarks and Notes
MARKOVIAN DEMAND INVENTORY MODELS

7. AVERAGE COST MODELS WITH LOST SALES 133
 7.1 Introduction 133
 7.2 Formulation of the Model 133
 7.3 Discounted Cost Model Results from Chapter 4 137
 7.4 Limiting Behavior as the Discount Factor Approaches 1 138
 7.5 Vanishing Discount Approach 142
 7.6 Verification Theorem 145
 7.7 Concluding Remarks and Notes 150

Part IV MISCELLANEOUS

8. MODELS WITH DEMAND INFLUENCED BY PROMOTION 153
 8.1 Introduction 153
 8.2 Formulation of the Model 155
 8.3 Assumptions and Preliminaries 162
 8.4 Structural Results 164
 8.5 Extensions 170
 8.6 Numerical Results 173
 8.7 Concluding Remarks and Notes 174

9. VANISHING DISCOUNT APPROACH VS. STATIONARY DISTRIBUTION APPROACH 179
 9.1 Introduction 179
 9.2 Statement of the Problem 182
 9.3 Review of Iglehart (1963b) 184
 9.4 An Example 187
 9.5 Asymptotic Bounds on the Optimal Cost Function 192
 9.6 Review of the Veinott and Wagner Paper 195
 9.7 Existence of Minimizing Values of s and S 197
 9.8 Stationary Distribution Approach versus Dynamic Programming and Vanishing Discount Approach 203
 9.9 Concluding Remarks and Notes 206
Table of Contents

Part V CONCLUSIONS AND OPEN RESEARCH PROBLEMS

10. CONCLUSIONS AND OPEN RESEARCH PROBLEMS 211

Part VI APPENDICES

A. ANALYSIS 217
 A.1 Continuous Functions on Metric Spaces 217
 A.2 Convergence of a Sequence of Functions 219
 A.3 The Arzelà-Ascoli Theorems 220
 A.4 Linear Operators 222
 A.5 Miscellany 223

B. PROBABILITY 225
 B.1 Integrability 225
 B.2 Conditional Expectation 226
 B.3 Renewal Theorem 227
 B.4 Renewal Reward Processes 227
 B.5 Stochastic Dominance 228
 B.6 Markov Chains 229

C. CONVEX, QUASI-CONVEX AND K-CONVEX FUNCTIONS 233
 C.1 PF$_2$ Density and Quasi-convex Functions 233
 C.2 Convex and K-convex Functions 234

References 241
Copyright Permissions 247
Author Index 249
Subject Index 251
Markovian Demand Inventory Models
Beyer, D.; Cheng, F.; Sethi, S.P.; Taksar, M.
2010, XX, 255 p. 15 illus., Hardcover