Contents

Preface ... vii

Part I Motivation for Preconditioning

1 A Finite Element Tutorial ... 3
 1.1 Finite element matrices 3
 1.2 Finite element refinement 9
 1.3 Coarse-grid approximation 10
 1.4 The mass (Gram) matrix 15
 1.5 A “strong” approximation property 18
 1.6 The coarse-grid correction 21
 1.7 A f.e. (geometric) two-grid method 22
 1.8 Element matrices and matrix orderings 25
 1.9 Element topology ... 29
 1.9.1 Main definitions and constructions 30
 1.9.2 Element faces ... 32
 1.9.3 Faces of AEs ... 34
 1.9.4 Edges of AEs .. 35
 1.9.5 Vertices of AEs 36
 1.9.6 Nested dissection ordering 36
 1.9.7 Element agglomeration algorithms 37
 1.10 Finite element matrices on many processors 39
 1.11 The mortar method .. 41
 1.11.1 Algebraic construction of mortar spaces 43

2 A Main Goal .. 49
Part II Block Factorization Preconditioners

3 Two-by-Two Block Matrices and Their Factorization

- **3.1 Matrices of two-by-two block form** 55
 - 3.1.1 Exact block-factorization, Schur complements 55
 - 3.1.2 Kato's Lemma .. 60
 - 3.1.3 Convergent iteration in A-norm 61
- **3.2 Approximate block-factorization** 63
 - 3.2.1 Product iteration matrix formula 63
 - 3.2.2 Block-factorizations and product iteration methods 65
 - 3.2.3 Definitions of two-level B_{TL} and two-grid B_{TG} preconditioners 67
 - 3.2.4 A main identity 68
 - 3.2.5 A simple lower-bound estimate 70
 - 3.2.6 Sharp upper bound 70
 - 3.2.7 The sharp spectral equivalence result 72
 - 3.2.8 Analysis of B_{TL} 74
 - 3.2.9 Analysis of B_{TG} 75
- **3.3 Algebraic two-grid methods and preconditioners; sufficient conditions for spectral equivalence** 78
- **3.4 Classical two-level block-factorization preconditioners** 81
 - 3.4.1 A general procedure of generating stable block-matrix partitioning 84
- **4 Classical Examples of Block-Factorizations** 89
 - 4.1 Block-ILU factorizations 89
 - 4.2 The M-matrix case 92
 - 4.3 Decay rates of inverses of band matrices 98
 - 4.4 Algorithms for approximate band inverses 103
 - 4.5 Wittum’s frequency filtering decomposition 109
 - 4.6 Block-ILU factorizations with block-size reduction 113
 - 4.7 An alternative approximate block-LU factorization 117
 - 4.8 Odd–even modified block-ILU methods 122
 - 4.9 A nested dissection (approximate) inverse 125
- **5 Multigrid (MG)** .. 129
 - 5.1 From two-grid to multigrid 129
 - 5.2 MG as block Gauss–Seidel 133
 - 5.3 A MG analysis in general terms 134
 - 5.4 The XZ identity .. 140
 - 5.5 Some classical upper bounds 144
 - 5.5.1 Variable V-cycle 152
 - 5.6 MG with more recursive cycles; W-cycle 157
 - 5.6.1 Definition of a v-fold MG-cycle; complexity 157
 - 5.6.2 AMLI-cycle multigrid 158
5.6.3 Analysis of AMLI 159
5.6.4 Complexity of the AMLI-cycle 162
5.6.5 Optimal W-cycle methods 163
5.7 MG and additive MG 165
5.7.1 The BPX-preconditioner 165
5.7.2 Additive representation of MG 166
5.7.3 Additive MG; convergence properties 167
5.7.4 MG convergence based on results for matrix subblocks ... 174
5.8 Cascadic multigrid .. 177
5.8.1 Convergence in a stronger norm 182
5.9 The hierarchical basis (HB) method 185
5.9.1 The additive multilevel HB 185
5.9.2 A stable multilevel hierarchical (direct) decomposition ... 188
5.9.3 Approximation of L_2-projections 192
5.9.4 Construction of bases in the coordinate spaces 195
5.9.5 The approximate wavelet hierarchical basis (or AWHB) ... 196
6 Topics on Algebraic Multigrid (AMG) 199
6.1 Motivation for the construction of P 199
6.2 On the classical AMG construction of P 202
6.3 On the constrained trace minimization construction of P . 205
6.4 On the coarse-grid selection 207
6.5 On the sparsity pattern of P 207
6.6 Coarsening by compatible relaxation 208
6.6.1 Smoothing property and compatible relaxation 209
6.6.2 Using inexact projections 211
6.7 The need for adaptive AMG 213
6.8 Smoothing based on “c”–“f” relaxation 214
6.9 AMGe: An element agglomeration AMG 225
6.9.1 Element-based construction of P 226
6.9.2 On various norm bounds of P 228
6.10 Multivector fitting interpolation 234
6.11 Window-based spectral AMG 235
6.12 Two-grid convergence of vector-preserving AMG 241
6.13 The result of Vaněk, Brezina, and Mandel 249
6.13.1 Null vector-based polynomially smoothed bases 249
6.13.2 Some properties of Chebyshev-like polynomials 252
6.13.3 A general setting for the SA method 255
7 Domain Decomposition (DD) Methods 263
7.1 Nonoverlapping blocks 263
7.2 Boundary extension mappings based on solving special coarse problems 264
7.3 Weakly overlapping blocks 267
7.4 Classical domain-embedding (DE) preconditioners 270
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>DE preconditioners without extension mappings</td>
<td>272</td>
</tr>
<tr>
<td>7.6</td>
<td>Fast solvers for tensor product matrices</td>
<td>274</td>
</tr>
<tr>
<td>7.7</td>
<td>Schwarz methods</td>
<td>280</td>
</tr>
<tr>
<td>7.8</td>
<td>Additive Schwarz preconditioners</td>
<td>286</td>
</tr>
<tr>
<td>7.9</td>
<td>The domain decomposition paradigm of Bank and Holst</td>
<td>291</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Local error estimates</td>
<td>300</td>
</tr>
<tr>
<td>7.10</td>
<td>The FAC method and related preconditioning</td>
<td>304</td>
</tr>
<tr>
<td>7.11</td>
<td>Auxiliary space preconditioning methods</td>
<td>313</td>
</tr>
<tr>
<td>8</td>
<td>Preconditioning Non symmetric and Indefinite Matrices</td>
<td>319</td>
</tr>
<tr>
<td>8.1</td>
<td>An abstract setting</td>
<td>319</td>
</tr>
<tr>
<td>8.2</td>
<td>A perturbation point of view</td>
<td>323</td>
</tr>
<tr>
<td>8.3</td>
<td>Implementation</td>
<td>325</td>
</tr>
<tr>
<td>9</td>
<td>Preconditioning Saddle-Point Matrices</td>
<td>327</td>
</tr>
<tr>
<td>9.1</td>
<td>Basic properties of saddle-point matrices</td>
<td>327</td>
</tr>
<tr>
<td>9.2</td>
<td>S.p.d. preconditioners</td>
<td>330</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Preconditioning based on “inf–sup” condition</td>
<td>332</td>
</tr>
<tr>
<td>9.3</td>
<td>Transforming A to a positive definite matrix</td>
<td>339</td>
</tr>
<tr>
<td>9.4</td>
<td>(Inexact) Uzawa and distributive relaxation methods</td>
<td>341</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Distributive relaxation</td>
<td>341</td>
</tr>
<tr>
<td>9.4.2</td>
<td>The Bramble–Pasciak transformation</td>
<td>342</td>
</tr>
<tr>
<td>9.4.3</td>
<td>A note on two-grid analysis</td>
<td>344</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Inexact Uzawa methods</td>
<td>347</td>
</tr>
<tr>
<td>9.5</td>
<td>A constrained minimization approach</td>
<td>353</td>
</tr>
<tr>
<td>10</td>
<td>Variable-Step Iterative Methods</td>
<td>363</td>
</tr>
<tr>
<td>10.1</td>
<td>Variable-step (nonlinear) preconditioners</td>
<td>363</td>
</tr>
<tr>
<td>10.2</td>
<td>Variable-step preconditioned CG method</td>
<td>365</td>
</tr>
<tr>
<td>10.3</td>
<td>Variable-step multilevel preconditioners</td>
<td>371</td>
</tr>
<tr>
<td>10.4</td>
<td>Variable-step AMLI-cycle MG</td>
<td>372</td>
</tr>
<tr>
<td>11</td>
<td>Preconditioning Nonlinear Problems</td>
<td>377</td>
</tr>
<tr>
<td>11.1</td>
<td>Problem formulation</td>
<td>377</td>
</tr>
<tr>
<td>11.2</td>
<td>Choosing an accurate initial approximation</td>
<td>379</td>
</tr>
<tr>
<td>11.3</td>
<td>The inexact Newton algorithm</td>
<td>380</td>
</tr>
<tr>
<td>12</td>
<td>Quadratic Constrained Minimization Problems</td>
<td>385</td>
</tr>
<tr>
<td>12.1</td>
<td>Problem formulation</td>
<td>385</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Projection methods</td>
<td>386</td>
</tr>
<tr>
<td>12.1.2</td>
<td>A modified projection method</td>
<td>389</td>
</tr>
<tr>
<td>12.2</td>
<td>Computable projections</td>
<td>390</td>
</tr>
<tr>
<td>12.3</td>
<td>Dual problem approach</td>
<td>391</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Dual problem formulation</td>
<td>391</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Reduced problem formulation</td>
<td>393</td>
</tr>
</tbody>
</table>
12.4 A monotone two-grid scheme .. 397
 12.4.1 Projected Gauss–Seidel 398
 12.4.2 Coarse-grid solution 398
12.5 A monotone FAS constrained minimization algorithm 401

Part III Appendices

A Generalized Conjugate Gradient Methods 407
 A.1 A general variational setting for solving nonsymmetric problems . 407
 A.2 A quick CG guide ... 410
 A.2.1 The CG algorithm 410
 A.2.2 Preconditioning .. 411
 A.2.3 Best polynomial approximation property of CG 412
 A.2.4 A decay rate estimate for A^{-1} 412

B Properties of Finite Element Matrices. Further Details 415
 B.1 Piecewise linear finite elements 415
 B.2 A semilinear second-order elliptic PDE 429
 B.3 Stable two-level HB decomposition of finite element spaces ... 433
 B.3.1 A two-level hierarchical basis and related strengthened
 Cauchy–Schwarz inequality 433
 B.3.2 On the MG convergence uniform w.r.t. the mesh and
 jumps in the PDE coefficients 438
 B.4 Mixed methods for second-order elliptic PDEs 439
 B.5 Nonconforming elements and Stokes problems 448
 B.6 F.e. discretization of Maxwell’s equations 453

C Computable Scales of Sobolev Norms 457
 C.1 H^s-stable decompositions 457
 C.2 Preliminary facts ... 457
 C.3 The main norm equivalence result 459
 C.4 The uniform coercivity property 463

D Multilevel Algorithms for Boundary Extension Mappings 467

E H^1-norm Characterization ... 471
 E.1 Optimality of the L_2-projections 471
 E.1.1 H^1_0-stable decompositions of finite element functions 475

F MG Convergence Results for Finite Element Problems 477
 F.1 Requirements on the multilevel f.e. decompositions for the MG
 convergence analysis .. 479
 F.2 A MG for weighted H (curl) space 487
 F.2.1 A multilevel decomposition of weighted Nédelec spaces 489
 F.3 A multilevel decomposition of div-free Raviart–Thomas spaces 495
 F.4 A multilevel decomposition of weighted H (div)-space 499
Multilevel Block Factorization Preconditioners
Matrix-based Analysis and Algorithms for Solving Finite Element Equations
Vassilevski, P.S.
2008, XIV, 530 p. 34 illus., Hardcover
ISBN: 978-0-387-71563-6