Contents

Preface v
List of Figures xvii
List of Tables xxi

1 An Introduction to Privacy-Preserving Data Mining 1
Charu C. Aggarwal, Philip S. Yu
1.1. Introduction 1
1.2. Privacy-Preserving Data Mining Algorithms 3
1.3. Conclusions and Summary 7
References 8

2 A General Survey of Privacy-Preserving Data Mining Models and Algorithms 11
Charu C. Aggarwal, Philip S. Yu
2.1. Introduction 11
2.2. The Randomization Method 13
 2.2.1 Privacy Quantification 15
 2.2.2 Adversarial Attacks on Randomization 18
 2.2.3 Randomization Methods for Data Streams 18
 2.2.4 Multiplicative Perturbations 19
 2.2.5 Data Swapping 19
2.3. Group Based Anonymization 20
 2.3.1 The k-Anonymity Framework 20
 2.3.2 Personalized Privacy-Preservation 24
 2.3.3 Utility Based Privacy Preservation 24
 2.3.4 Sequential Releases 25
 2.3.5 The l-diversity Method 26
 2.3.6 The t-closeness Model 27
 2.3.7 Models for Text, Binary and String Data 27
2.4. Distributed Privacy-Preserving Data Mining 28
 2.4.1 Distributed Algorithms over Horizontally Partitioned Data Sets 30
 2.4.2 Distributed Algorithms over Vertically Partitioned Data 31
 2.4.3 Distributed Algorithms for k-Anonymity 32
2.5. Privacy-Preservation of Application Results 32
 2.5.1 Association Rule Hiding 33
 2.5.2 Downgrading Classifier Effectiveness 34
 2.5.3 Query Auditing and Inference Control 34
2.6. Limitations of Privacy: The Curse of Dimensionality 37
2.7. Applications of Privacy-Preserving Data Mining 38
 2.7.1 Medical Databases: The Scrub and Datafly Systems 39
 2.7.2 Bioterrorism Applications 40
 2.7.3 Homeland Security Applications 40
 2.7.4 Genomic Privacy 42
2.8. Summary 43
References 43

3
A Survey of Inference Control Methods for Privacy-Preserving Data Mining

Josep Domingo-Ferrer

3.1. Introduction 54
3.2. A classification of Microdata Protection Methods 55
3.3. Perturbative Masking Methods 58
 3.3.1 Additive Noise 58
 3.3.2 Microaggregation 59
 3.3.3 Data Wapping and Rank Swapping 61
 3.3.4 Rounding 62
 3.3.5 Resampling 62
 3.3.6 PRAM 62
 3.3.7 MASSC 63
3.4. Non-perturbative Masking Methods 63
 3.4.1 Sampling 64
 3.4.2 Global Recoding 64
 3.4.3 Top and Bottom Coding 65
 3.4.4 Local Suppression 65
3.5. Synthetic Microdata Generation 65
 3.5.1 Synthetic Data by Multiple Imputation 65
 3.5.2 Synthetic Data by Bootstrap 66
 3.5.3 Synthetic Data by Latin Hypercube Sampling 66
 3.5.4 Partially Synthetic Data by Cholesky Decomposition 67
 3.5.5 Other Partially Synthetic and Hybrid Microdata Approaches 67
 3.5.6 Pros and Cons of Synthetic Microdata 68
3.6. Trading off Information Loss and Disclosure Risk 69
 3.6.1 Score Construction 69
 3.6.2 R-U Maps 71
 3.6.3 k-anonymity 71
3.7. Conclusions and Research Directions 72
References 73
Contents

4
Measures of Anonymity
Suresh Venkatasubramanian

4.1. Introduction 81
4.1.1 What is Privacy? 82
4.1.2 Data Anonymization Methods 83
4.1.3 A Classification of Methods 84

4.2. Statistical Measures of Anonymity 85
4.2.1 Query Restriction 85
4.2.2 Anonymity via Variance 85
4.2.3 Anonymity via Multiplicity 86

4.3. Probabilistic Measures of Anonymity 87
4.3.1 Measures Based on Random Perturbation 87
4.3.2 Measures Based on Generalization 90
4.3.3 Utility vs Privacy 94

4.4. Computational Measures of Anonymity 94
4.4.1 Anonymity via Isolation 97

4.5. Conclusions and New Directions 97
4.5.1 New Directions 98

References 99

5
k-Anonymous Data Mining: A Survey
V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati

5.1. Introduction 105
5.2. k-Anonymity 107
5.3. Algorithms for Enforcing k-Anonymity 110
5.4. k-Anonymity Threats from Data Mining 117
5.4.1 Association Rules 118
5.4.2 Classification Mining 118

5.5. k-Anonymity in Data Mining 120
5.6. Anonymize-and-Mine 123
5.7. Mine-and-Anonymize 126
5.7.1 Enforcing k-Anonymity on Association Rules 126
5.7.2 Enforcing k-Anonymity on Decision Trees 130

5.8. Conclusions 133
Acknowledgments 133
References 134

6
A Survey of Randomization Methods for Privacy-Preserving Data Mining
Charu C. Aggarwal, Philip S. Yu

6.1. Introduction 137
6.2. Reconstruction Methods for Randomization 139
6.2.1 The Bayes Reconstruction Method 139
6.2.2 The EM Reconstruction Method 141
6.2.3 Utility and Optimality of Randomization Models 143
Contents

6.3. Applications of Randomization 144
 6.3.1 Privacy-Preserving Classification with Randomization 144
 6.3.2 Privacy-Preserving OLAP 145
 6.3.3 Collaborative Filtering 145

6.4. The Privacy-Information Loss Tradeoff 146

6.5. Vulnerabilities of the Randomization Method 149

6.6. Randomization of Time Series Data Streams 151

6.7. Multiplicative Noise for Randomization 152
 6.7.1 Vulnerabilities of Multiplicative Randomization 153
 6.7.2 Sketch Based Randomization 153

6.8. Conclusions and Summary 154

References 154

7

A Survey of Multiplicative Perturbation for Privacy-Preserving
Data Mining

Keke Chen and Ling Liu

7.1. Introduction 158
 7.1.1 Data Privacy vs. Data Utility 159
 7.1.2 Outline 160

7.2. Definition of Multiplicative Perturbation 161
 7.2.1 Notations 161
 7.2.2 Rotation Perturbation 161
 7.2.3 Projection Perturbation 162
 7.2.4 Sketch-based Approach 164
 7.2.5 Geometric Perturbation 164

7.3. Transformation Invariant Data Mining Models 165
 7.3.1 Definition of Transformation Invariant Models 166
 7.3.2 Transformation-Invariant Classification Models 166
 7.3.3 Transformation-Invariant Clustering Models 167

7.4. Privacy Evaluation for Multiplicative Perturbation 168
 7.4.1 A Conceptual Multidimensional Privacy Evaluation Model 168
 7.4.2 Variance of Difference as Column Privacy Metric 169
 7.4.3 Incorporating Attack Evaluation 170
 7.4.4 Other Metrics 171

7.5. Attack Resilient Multiplicative Perturbations 171
 7.5.1 Naive Estimation to Rotation Perturbation 171
 7.5.2 ICA-Based Attacks 173
 7.5.3 Distance-Inference Attacks 174
 7.5.4 Attacks with More Prior Knowledge 176
 7.5.5 Finding Attack-Resilient Perturbations 177

7.6. Conclusion 177

Acknowledgment 178

References 179

8

A Survey of Quantification of Privacy Preserving Data Mining Algorithms 183

Elisa Bertino, Dan Lin and Wei Jiang

8.1. Introduction 184

8.2. Metrics for Quantifying Privacy Level 186
 8.2.1 Data Privacy 186
Contents

8.2.2 Result Privacy 191
8.3. Metrics for Quantifying Hiding Failure 192
8.4. Metrics for Quantifying Data Quality 193
 8.4.1 Quality of the Data Resulting from the PPDM Process 193
 8.4.2 Quality of the Data Mining Results 198
8.5. Complexity Metrics 200
8.6. How to Select a Proper Metric 201
8.7. Conclusion and Research Directions 202
References 202

9
A Survey of Utility-based Privacy-Preserving Data Transformation Methods
Ming Hua and Jian Pei

9.1. Introduction 208
 9.1.1 What is Utility-based Privacy Preservation? 209
9.2. Types of Utility-based Privacy Preservation Methods 210
 9.2.1 Privacy Models 210
 9.2.2 Utility Measures 212
 9.2.3 Summary of the Utility-Based Privacy Preserving Methods 214
9.3. Utility-Based Anonymization Using Local Recoding 214
 9.3.1 Global Recoding and Local Recoding 215
 9.3.2 Utility Measure 216
 9.3.3 Anonymization Methods 217
 9.3.4 Summary and Discussion 219
9.4. The Utility-based Privacy Preserving Methods in Classification Problems 219
 9.4.1 The Top-Down Specialization Method 220
 9.4.2 The Progressive Disclosure Algorithm 224
 9.4.3 Summary and Discussion 228
9.5. Anonymized Marginal: Injecting Utility into Anonymized Data Sets 228
 9.5.1 Anonymized Marginal 229
 9.5.2 Utility Measure 230
 9.5.3 Injecting Utility Using Anonymized Marginals 231
 9.5.4 Summary and Discussion 233
9.6. Summary 234
Acknowledgments 234
References 234

10
Mining Association Rules under Privacy Constraints
Jayant R. Haritsa

10.1. Introduction 239
10.2. Problem Framework 240
 10.2.1 Database Model 240
 10.2.2 Mining Objective 241
 10.2.3 Privacy Mechanisms 241
 10.2.4 Privacy Metric 243
 10.2.5 Accuracy Metric 245
Contents

13.2. Basic Cryptographic Techniques for Privacy-Preserving Distributed Data Mining 315
13.3. Common Secure Sub-protocols Used in Privacy-Preserving Distributed Data Mining 318
13.4. Privacy-preserving Distributed Data Mining on Horizontally Partitioned Data 323
13.5. Comparison to Vertically Partitioned Data Model 326
13.6. Extension to Malicious Parties 327
13.7. Limitations of the Cryptographic Techniques Used in Privacy-Preserving Distributed Data Mining 329
13.8. Privacy Issues Related to Data Mining Results 330
13.9. Conclusion 332
References 332

14
A Survey of Privacy-Preserving Methods Across Vertically Partitioned Data
Jaideep Vaidya
14.1. Introduction 337
14.2. Classification 341
14.2.1 Naive Bayes Classification 342
14.2.2 Bayesian Network Structure Learning 343
14.2.3 Decision Tree Classification 344
14.3. Clustering 346
14.4. Association Rule Mining 347
14.5. Outlier detection 349
14.5.1 Algorithm 351
14.5.2 Security Analysis 352
14.5.3 Computation and Communication Analysis 354
14.6. Challenges and Research Directions 355
References 356

15
A Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods
Kun Liu, Chris Giannella, and Hillol Kargupta
15.1. Introduction 360
15.2. Definitions and Notation 360
15.3. Attacking Additive Data Perturbation 361
15.3.1 Eigen-Analysis and PCA Preliminaries 362
15.3.2 Spectral Filtering 363
15.3.3 SVD Filtering 364
15.3.4 PCA Filtering 365
15.3.5 MAP Estimation Attack 366
15.3.6 Distribution Analysis Attack 367
15.3.7 Summary 367
15.4. Attacking Matrix Multiplicative Data Perturbation 369
15.4.1 Known I/O Attacks 370
15.4.2 Known Sample Attack 373
15.4.3 Other Attacks Based on ICA 374
Privacy-Preserving Data Mining
Models and Algorithms
Aggarwal, C.C.; Yu, P.S. (Eds.)
2008, XXII, 514 p., Hardcover