Contents

Preface xv

1. ROBOTIC CELLS IN PRACTICE 1
 1.1 Cellular Manufacturing 2
 1.2 Robotic Cell Flowshops 3
 1.3 Throughput Optimization 7
 1.4 Historical Overview 9
 1.5 Applications 11

2. A CLASSIFICATION SCHEME FOR ROBOTIC CELLS AND NOTATION 15
 2.1 Machine Environment 15
 2.1.1 Number of Machines 15
 2.1.2 Number of Robots 16
 2.1.3 Types of Robots 17
 2.1.4 Cell Layout 17
 2.2 Processing Characteristics 17
 2.2.1 Pickup Criterion 17
 2.2.2 Travel-Time Metric 18
 2.2.3 Number of Part-Types 20
 2.3 Objective Function 20
 2.4 An $\alpha|\beta|\gamma$ Classification for Robotic Cells 20
 2.5 Cell Data 24
 2.5.1 Processing Times 24
 2.5.2 Loading and Unloading Times 24
 2.5.3 Notations for Cell States and Robot Actions 25

3. CYCLIC PRODUCTION 29
 3.1 Operating Policies and Dominance of Cyclic Solutions 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Cycle Times</td>
<td>34</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Waiting Times</td>
<td>34</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Computation of Cycle Times</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Lower Bounds on Cycle Times</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Optimal 1-Unit Cycles</td>
<td>40</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Special Cases</td>
<td>40</td>
</tr>
<tr>
<td>3.3.2</td>
<td>General Cases: Constant Travel-Time Cells</td>
<td>43</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Optimization over Basic Cycles</td>
<td>51</td>
</tr>
<tr>
<td>3.3.3</td>
<td>General Cases: Additive and Euclidean Travel-Time Cells</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Calculation of Makespan of a Lot</td>
<td>63</td>
</tr>
<tr>
<td>3.4.1</td>
<td>A Graphical Approach</td>
<td>63</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Algebraic Approaches</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>Quality of 1-Unit Cycles and Approximation Results</td>
<td>65</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Additive Travel-Time Cells</td>
<td>66</td>
</tr>
<tr>
<td>3.5.1.1</td>
<td>Pyramidal Cycles</td>
<td>68</td>
</tr>
<tr>
<td>3.5.1.2</td>
<td>A 1.5-Approximation Algorithm</td>
<td>68</td>
</tr>
<tr>
<td>3.5.1.3</td>
<td>A 10/7-Approximation for Additive Cells</td>
<td>74</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Constant Travel-Time Cells</td>
<td>87</td>
</tr>
<tr>
<td>3.5.2.1</td>
<td>A 1.5-Approximation Algorithm</td>
<td>89</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Euclidean Travel-Time Cells</td>
<td>94</td>
</tr>
<tr>
<td>4.1</td>
<td>Additional Notation</td>
<td>102</td>
</tr>
<tr>
<td>4.2</td>
<td>Cells with Two Machines</td>
<td>104</td>
</tr>
<tr>
<td>4.3</td>
<td>A Cyclic Sequence for m-Machine Dual-Gripper Cells</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Dual-Gripper Cells with Small Gripper Switch Times</td>
<td>114</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparing Dual-Gripper and Single-Gripper Cells</td>
<td>116</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of Productivity: Computational Results</td>
<td>122</td>
</tr>
<tr>
<td>4.7</td>
<td>Efficiently Solvable Cases</td>
<td>128</td>
</tr>
<tr>
<td>4.8</td>
<td>Single-Gripper Cells with Output Buffers at Machines</td>
<td>131</td>
</tr>
<tr>
<td>4.9</td>
<td>Dual-Gripper Robotic Cells: Constant Travel Time</td>
<td>141</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Lower Bounds and Optimal Cycles: m-Machine Simple Robotic Cells</td>
<td>143</td>
</tr>
<tr>
<td>4.9.2</td>
<td>One-Unit Cycles</td>
<td>144</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Multi-Unit Cycles</td>
<td>146</td>
</tr>
<tr>
<td>5.1</td>
<td>Single-Gripper Robots</td>
<td>154</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Definitions</td>
<td>154</td>
</tr>
<tr>
<td>5.1.2</td>
<td>k-Unit Cycles and Blocked Cycles</td>
<td>156</td>
</tr>
</tbody>
</table>
5.1.2.1 Structural Results for k-Unit Cycles 156
5.1.2.2 Blocked Cycles 157
5.1.3 LCM Cycles 165
5.1.4 Practical Implications 169
5.1.4.1 Optimal Cycle for a Common Case 169
5.1.4.2 Fewest Machines Required to Meet Timelines 171
5.2 Dual-Gripper Robots 171
5.2.1 Lower Bound on Per Unit Cycle Time 172
5.2.2 An Optimal Cycle 175
5.2.3 Improvement from Using a Dual-Gripper Robot or Parallel Machines 180
5.2.3.1 Installing a Dual-Gripper Robot in a Simple Robotic Cell 181
5.2.3.2 Installing Parallel Machines in a Single-Gripper Robot Cell 182
5.2.3.3 Installing a Dual-Gripper Robot in a Single-Gripper Robotic Cell with Parallel Machines 183
5.2.3.4 An Illustration on Data from Implemented Cells 187
6. MULTIPLE-PART-TYPE PRODUCTION: SINGLE-GRIPPER ROBOTS 191
6.1 MPS Cycles and CRM Sequences 192
6.2 Scheduling Multiple Part-Types in Two-Machine Cells 194
6.3 Scheduling Multiple Part-Types in Three-Machine Cells 206
6.3.1 Cycle Time Derivations 207
6.3.2 Efficiently Solvable Special Cases 211
6.4 Steady-State Analyses 216
6.4.1 Reaching Steady State for the Sequence $CRM(\pi_2)$ 217
6.4.2 Reaching Steady State for the Sequence $CRM(\pi_6)$ 225
6.4.3 A Practical Guide to Initializing Robotic Cells 229
6.5 Intractable Cycles for Three-Machine Cells 231
6.5.1 MPS Cycles with the Sequence $CRM(\pi_2)$ 231
6.5.2 MPS Cycles with the Sequence $CRM(\pi_6)$ 238
6.5.3 Complexity of Three-Machine Robotic Cells 244
6.6 Scheduling Multiple Part-Types in Large Cells 247
6.6.1 Class U: Schedule Independent Problems 250
6.6.2 Class V_1: Special Cases of the TSP 251
6.6.3 Class V_2: NP-Hard TSP Problems 253
6.6.4 Class W: NP-Hard Non-TSP Problems 264
6.6.5 Overview 268
6.7 Heuristics for Three-Machine Problems 270
6.7.1 A Heuristic Under the Sequence $CRM(\pi_2)$ 270
6.7.2 A Heuristic Under the Sequence $CRM(\pi_6)$ 273
6.7.3 Computational Testing 274
6.7.4 Heuristics for General Three-Machine Problems 276

6.8 Heuristics for Large Cells 281

6.9 The Cell Design Problem 284
6.9.1 Forming Cells 285
6.9.2 Buffer Design 288
6.9.3 An Example 292
6.9.4 Computational Testing 293

7. MULTIPLE-PART-TYPE PRODUCTION: DUAL-GRIPPER ROBOTS 297
7.1 Two-Machine Cells: Undominated CRM Sequences 300
7.2 Two-Machine Cells: Complexity 306
7.2.1 Cycle Time Calculation 306
7.2.2 Strong NP-Completeness Results 312
7.2.3 Polynomially Solvable Problems 318
7.3 Analyzing Two-Machine Cells with Small Gripper Switch Times 319
7.4 A Heuristic for Specific CRM Sequences 324
7.4.1 A Performance Bound for Heuristic Hard-CRM 325
7.5 A Heuristic for Two-Machine Cells 339
7.6 Comparison of Productivity: Single-Gripper Vs. Dual-Gripper Cells 340
7.7 An Extension to m-Machine Robotic Cells 342

8. MULTIPLE-ROBOT CELLS 349
8.1 Physical Description of a Multiple-Robot Cell 350
8.2 Cycles in Multiple-Robot Cells 352
8.3 Cycle Times 354
8.4 Scheduling by a Heuristic Dispatching Rule 357
8.5 Computational Results 358
8.6 Applying an LCM Cycle to Implemented Cells 361

9. NO-WAIT AND INTERVAL ROBOTIC CELLS 363
9.1 No-Wait Robotic Cells 363
9.2 Interval Pick-up Robotic Cells 369

10. OPEN PROBLEMS 371
10.1 Simple Robotic Cells 371
10.2 Simple Robotic Cells with Multiple Part Types 376
Contents

10.3 Robotic Cells with Parallel Machines 376
10.4 Stochastic Data 377
10.5 Dual-Gripper Robots 377
10.6 Flexible Robotic Cells 378
10.7 Implementation Issues 378
 10.7.1 Using Local Material Handling Devices 378
 10.7.2 Revisiting Machines 379

Appendices
Appendix A 383
 A.1 1-Unit Cycles 383
 A.1.1 1-Unit Cycles in Classical Notation 384
 A.1.2 1-Unit Cycles in Activity Notation 385
Appendix B 387
 B.1 The Gilmore-Gomory Algorithm for the TSP 387
 B.1.1 The Two-Machine No-Wait Flowshop Problem 387
 B.1.2 Formulating a TSP 388
 B.1.3 The Gilmore-Gomory Algorithm 389
 B.2 The Three-Machine No-Wait Flowshop Problem as a TSP 394

Copyright Permissions 409

Index 413
Throughput Optimization in Robotic Cells
Dawande, M.W.; Geismar, H.N.; Sethi, S.P.;
Sriskandarajah, C.
2007, XVI, 420 p., Hardcover
ISBN: 978-0-387-70987-1