Preface

A Brief Journey through “Wireless Mesh Networks: Architectures and Protocols”

Ekram Hossain, University of Manitoba, Winnipeg, Canada
Kin Leung, Imperial College, London, United Kingdom

Introduction

Wireless mesh networking has emerged as a promising design paradigm for next generation wireless networks. Wireless mesh networks (WMNs) consist of mesh clients and mesh routers, where the mesh routers form a wireless infrastructure/backbone and interwork with the wired networks to provide multihop wireless Internet connectivity to the mesh clients. Wireless mesh networking has emerged as one of the most promising concept for self-organizing and auto-configurable wireless networking to provide adaptive and flexible wireless Internet connectivity to mobile users. This concept can be used for different wireless access technologies such as IEEE 802.11, 802.15, 802.16-based wireless local area network (WLAN), wireless personal area network (WPAN), and wireless metropolitan area network (WMAN) technologies, respectively. Potential application scenarios for wireless mesh networks include backhaul support for cellular networks, home networks, enterprise networks, community networks, and intelligent transport system networks. Development of wireless mesh networking technology has to deal with challenging architecture and protocol design issues, and there is an increasing interest on this technology among the researchers in both academia and industry. There are many on-going research projects in different universities and industrial research labs. Also, many startup companies are building mesh networking platforms based on off-the-shelf wireless access technologies and developing demanding applications and services. This book intends to provide a unified view of the state-of-the-art achievements in the area of protocols and architectures for wireless mesh networking technology.
The contributed articles in this book from the leading experts in this field cover different aspects of analysis, design, deployment, and optimization of protocols and architectures for WMNs. In particular, the topics include challenges and issues in designing architectures and protocols for WMNs, medium access control and routing protocols for WMNs, resource allocation and scheduling in WMNs, cost optimization in WMN nodes using energy harvesting technologies, cross-layer design for WMNs, and security in WMNs.

Issues in Architecture and Protocol Design for Wireless Mesh Networks

Chapter 1, authored by V. C. Gungor, E. Natalizio, P. Pace, and S. Avallone, provides a comprehensive introduction to the recent developments in the protocols and architectures of wireless mesh networks (WMNs) and also discusses the opportunities and challenges of wireless mesh networks. The major issues related to wireless mesh network architecture and management include network planning (e.g., placement of mesh routers, number and type of network interfaces in each router), network integration (i.e., integration of WPAN, WLAN, and WMAN technologies), network scalability (i.e., ability to deal with large network topology), and flexible and scalable network management. The protocols for wireless mesh networks should be able to exploit the advanced wireless technologies (e.g., cognitive/reconfigurable radio, multiple-input multiple-output (MIMO) radio), provide quality of service (QoS) to different types of applications, provide efficient network self-reconfiguration, topology control, power management, provide mobility support, and provide mechanisms for efficient encryption, authentication, and intrusion detection.

The authors have described the major research issues at the different layers in the protocol stack of a wireless mesh network. At the application layer, new protocols need to be designed for distributed information sharing and to address the pricing and incentive issues. Again, the application layer protocols need to work in cohesion with the lower layer protocols to meet the application requirements in an efficient manner.

Efficient transport protocols would be required for non-real-time and real-time applications in wireless mesh networks. Due to the dynamic characteristics of multi-hop communication environment in a wireless mesh network as well as the integration of different types of networking technologies, the traditional transport protocols (e.g., TCP-based protocols) may experience significant performance degradation. In particular, under-utilization of network resources may result due to the increased round-trip time (RTT), large variance in RTT estimate, and increased link error rate in the network as well as the end-to-end congestion detection and control mechanisms used in these protocols. Again, since the traditional TCP-friendly rate control protocols for multimedia delivery handle all non-congestion-related packet losses in the same way, they would suffer performance inefficiency. Design of dynamic adaptive transport protocol for high performance real-time data transport and real-time
multimedia communications in wireless mesh networks is a grand research challenge.

For wireless mesh networks, simple (i.e., low overhead), scalable, distributed, load-balancing and link quality-aware routing protocols would be required for efficient multihop communications. Designing efficient routing protocols for multi-channel and multi-radio mesh networks is a major research challenge. An integrated design of routing, medium access control, and channel allocation (or scheduling) may lead to an efficient solution.

Multi-channel and multi-radio-aware MAC protocols are promising for wireless mesh networks. Channel allocation among multiple radios should be performed in a way so that the network connectivity is preserved and the co-channel interference remains below the acceptable limit while at the same time the maximum frequency reuse is achieved. Also, multi-rate transmission and adaptivity to dynamic network configuration are desirable.

High-speed physical layer techniques such as MIMO, beamforming and smart antennas, reconfigurable/cognitive radio will enable to increase the capacity and reliability of wireless mesh networks. These advanced physical layer techniques can be fully utilized by making the higher-layer protocols aware of the physical layer and using the low-cost software radio platform.

Specifications for wireless mesh networks are being standardized by the IEEE 802.11, IEEE 802.15, and IEEE 802.16 standard groups. 802.11s task group was set up by IEEE for installation, configuration, and operation of IEEE 802.11-based wireless mesh networks. IEEE 802.15.5 task group is working towards developing an architectural framework for mesh networking among IEEE 802.15-based WPAN devices. IEEE 802.16a standard for broadband wireless access in metropolitan area networks support mesh mode of operation for fixed broadband applications in which the subscriber stations can directly communicate with each other through multihop communications. The Mobile Multihop Relay (MMR) study group under the IEEE 802.16 working group is developing specifications for supporting mobile stations by using multihop relaying techniques through relay stations.

Recent field trials and experiments on wireless mesh networks (built from off-the-shelf wireless technologies) in several academic research testbeds and commercial installations have shown that the performance is not quite satisfactory. This reflects the need for development of novel architectures and protocol suites to address the issues such as QoS, scalability, heterogeneity, self-reconfiguration, and security for wireless mesh networks.

Chapter 2, authored by J.-H. Huang, L.-C. Wang, and C.-J. Chang first describes the major wireless mesh network architectures, namely, the backbone wireless mesh network, backbone with end-user wireless mesh network, and relay-based wireless mesh network architectures. In a wireless multihop backbone network, each of the base stations (or access points (APs)) operates as a relay to forward traffic from other base stations to the Internet gateway. In a backbone with end-user wireless mesh network, both the base stations and end users act as relays to forward traffic from neighboring nodes, and thereby, it improves the coverage of base stations and enhances network connectivity.
The authors address the scalability issue in wireless mesh networks from the network deployment perspective. The authors propose two scalable wireless mesh network deployment strategies, namely, cluster-based wireless mesh and ring-based wireless mesh for dense urban coverage and wide-area coverage scenarios, respectively. In a cluster-based wireless mesh, several adjacent access points, which are connected “wirelessly”, form a cluster and only one of the access points connects to the Internet. The ring-based wireless mesh is based on a mesh cell architecture where the cell is divided into several rings allocated with different channels. The central gateway (which is connected to the Internet) and the stationary mesh nodes in the cell form a multihop wireless mesh network. The authors investigate the tradeoff between capacity and coverage for these two scalable wireless mesh architectures. With multiple available channels, the scalability can be improved through proper frequency planning and proper design of the deployment parameters in these networks. Note that, while a larger cell size is preferred from the coverage viewpoint, a smaller cell size would be preferable to achieve a higher data rate.

The authors apply a mixed-integer nonlinear programming (MINLP)-based optimization approach to determine the optimal deployment parameters (i.e., separation distance for access points in a cluster-based wireless mesh network) under given coverage and rate constraints where the objective is to maximize the ratio of total offered traffic load to the cost for a cluster of access points. Two AP placement strategies, namely, the increasing-spacing and the uniform-spacing strategies are considered. In case of increasing-spacing placement strategy, access points are deployed with increasing separation distance from the central access point. In case of uniform-spacing placement strategy, all the cells in a cluster have the same radius. Numerical results show that the increasing-spacing strategy outperforms the uniform-spacing strategy and there exists an optimal value of the number of access points which maximizes the objective function.

For the ring-based wireless mesh network, an MINLP formulation is used to determine the optimal number of rings in a cell and the optimal width of each ring for which the desired tradeoff between throughput and coverage can be achieved. Numerical results assuming IEEE 802.11a-based wireless access show that the ring-based wireless mesh improves both the coverage and the cell throughput significantly compared to the single-hop network.

Information Theoretic Characterization of End-to-End Performance in Cellular Mesh Networks

Chapter 3, authored by Ö. Oyman and S. Sandhu, provides results on information-theoretic characterization of end-to-end performance in terms of physical channel and system parameters in an orthogonal frequency division multiplexing (OFDM)-based multihop cellular mesh network. Specifically, the capacity is defined as the end-to-end (instantaneous) conditional mutual information which is a function of the random fading channel parameters and the transmit signal-to-noise ratio. This conditional mutual information can be computed for each hop considering practical
link adaptation mechanisms based upon which an end-to-end link quality parameter can be obtained.

Through simulation, the authors demonstrate that, for users at the edge of a cell, multihop relaying can provide capacity and coverage gains over direct transmission. Also, multihop relaying improves the end-to-end capacity compared to single-hop communication, especially at the low outage probability regime. The optimal number of hops, which maximizes the end-to-end mutual information is observed to be sensitive to the channel parameters.

Based on a Markov chain model, the authors also analyze the end-to-end throughput and latency over a multihop network which supports automatic repeat request (ARQ)-based error control at each hop along a routing path. Based on this analysis, the routing metric at each hop can be obtained, and subsequently, the throughput-maximizing (or latency-minimizing) routing path can be determined.

To this end, the authors present a centralized resource allocation framework for user scheduling, subcarrier allocation, and multihop route selection in orthogonal frequency division multiple access (OFDMA)-based relay-assisted cellular mesh networks. In this framework, the base station decides on the allocation of time and frequency resources across users and it also coordinates the actions of the relay terminals. To reduce system design complexity, multihop route selection and subcarrier allocation are performed separately. The link quality metrics are used to choose the multihop routing paths for each user such that the end-to-end capacity is maximized. The end-to-end route metrics for all users over all subcarriers are then used for scheduling the subcarriers. The authors also demonstrate how the information theoretic analysis of end-to-end capacity can be used to determine the optimal policies for network entry and handoff.

Medium Access Control and Routing Protocols for Wireless Mesh Networks

Chapter 4, authored by J. C. Hou, K.-J. Park, T.-S. Kim, and L.-C. Kung, provides a comprehensive survey on the state of the art in design and implementation of medium access control (MAC) and routing protocols for wireless mesh networks. The objective of a MAC protocol in such a network is to maximize network capacity (e.g., through improved spatial reuse) while providing required quality of service (QoS) performances to the users. The major issues related to MAC design in a wireless mesh network are - controlling the sharing range of the wireless medium and increasing spatial reuse, exploiting availability of multiple channels, and exercising rate control. The spatial reuse can be improved by either reducing the transmit power (while maintaining network connectivity) or increasing the carrier sense threshold (while mitigating MAC-level interference). Capacity improvements can be achieved by using multiple radio interfaces in each mesh node where orthogonal channels are assigned to the radios. Distributed dynamic assignment of channels among the radios as well as joint optimization of routing and channel assignment are challenging
research problems. Network throughput can be maximized through dynamic adapta-
tion of data rate according to the channel condition, that is, by selecting the highest
possible data rate for a given signal-to-interference-plus-noise ratio (SINR) that al-

tows correct decoding of packets at the receiver.

The authors summarize the related works on transmit power control, carrier sense
adaptation, and exploiting spatial-temporal diversity which are intended to improve
the spatial reuse/capacity of the network. In the literature, the transmit power control
problem in wireless ad hoc/sensor/mesh networks has been studied by using graph-
theoretic approaches in the context of topology maintenance. The major objective
here is to mitigate MAC interference while preserving network connectivity. The

graph-model-based topology control algorithms aim at keeping the node degree in
the communication graph low with the assumption that low node degree implies
low interference. However, in a graph model, since node degree may not adequately
capture the physical interference, graph-model-based topology control may result
in low network capacity and volatile network connectivity. There have been other
approaches for transmit power control which aim at maximizing network capacity.

A number of studies in the literature focused on adaptation of carrier sense
threshold to improve the level of spatial reuse. The selection of the optimal carrier
sense threshold depends on the factors such as the SINR threshold, level of chan-

nel contention (i.e., traffic load), transmit power, network topology, hidden/exposed
nodes, type of flows (i.e., single hop or multihop), bidirectional handshakes, packet
size, and MAC overhead. The relationship between the transmit power and the car-

rier sense threshold impact network capacity. For example, with low transmit power
and high carrier sense threshold, a large number of concurrent transmissions can
be supported, with each transmission sustaining a low data rate. Several works in
the literature addressed the problem of joint control of transmit power and carrier
sense threshold. Again, transmit power can be jointly optimized with rate control
to maximize network capacity. For a rate-adaptive MAC protocol, data rate is gen-

erally increased/decreased on consecutive transmission success/packet loss. The rate
control problem at the MAC layer has been studied quite extensively in the literature.

In a wireless mesh network, the spatial diversity that exists among the multihop
paths, can be exploited to improve network capacity. Again, capacity can be im-

proved through multi-channel and multi-radio design for wireless mesh networks.
Specifically, in the MAC layer, multiple channels can be exploited to achieve higher
throughput as well as to mitigate the fairness problem in a multihop environment.
Multiple radios in a node enable it to communicate with other nodes in a full-duplex
manner with minimal interference.

The major objective of a routing protocol for wireless mesh networks is to deter-
mine high-throughput routes (i.e., interference-mitigated routes) between nodes so
that the maximal end-to-end throughput can be achieved. Instead of using the con-

ventional hop-count-based route metric, link quality-based route metrics have been
proposed for routing in wireless mesh networks. In the literature, routing protocols
have been proposed for single-radio single-channel, single-radio multi-channel, and
multi-radio multi-channel wireless mesh networks. In a multi-channel and multi-
radio mesh network, by properly assigning the different channels to the different ra-
dios, intra- and inter-flow interference can be avoided and interference-free/mitigated routes can be constructed.

To this end, the authors introduce a modular programming environment to enable cross-layer design and optimization in wireless mesh networks. In this environment, physical layer (PHY)/MAC parameters and events can be exported to higher-layer protocol modules. Controlled transparency, flexibility, and easy integration and portability are some of the features of this programming environment.

Channel Assignment Strategies in Multi-channel and Multi-radio Wireless Mesh Networks

Chapter 5, authored by M. Conti, S. K. Das, L. Lenzini, and H. Skalli, deals with the problem of assigning channels to radio interfaces in a multi-channel and multi-radio wireless mesh backbone network. The key challenges associated with the channel assignment problem are outlined and a survey on the existing channel assignment schemes is provided.

The objective of a channel assignment strategy is to ensure efficient utilization of the available channels (e.g., by minimizing interference) while maximizing connectivity in the network. However, since these two requirements are conflicting with each other, the goal is to achieve a balance between these two. The major constraints which need to be satisfied by a channel assignment scheme include: fixed number of channels in the network, limited number of radios in a mesh node/router, common channel between two communicating nodes, and limited channel capacity. Also, a channel assignment scheme should take the amount of traffic load supported by each mesh node into consideration.

Optimal channel assignment in an arbitrary wireless mesh backbone is an NP-hard problem (similar to the graph coloring problem). The existing channel assignment schemes in the literature are, therefore, mostly heuristic based. These schemes can be classified into three categories: fixed, dynamic, and hybrid channel assignment schemes. Fixed assignment schemes assign channels to the radios either permanently or for a long time interval. With dynamic channel assignment, the radios can frequently switch from one channel to another. Hybrid channel assignment strategies apply a fixed assignment for some radios and a dynamic assignment for other radios.

Fixed channel assignment schemes can be further classified into two categories: common channel assignment (CCA) schemes and varying channel assignment (VCA) schemes. In CCA, all the radios in all of the mesh nodes are assigned the same set of channels. In VCA, radios of different nodes are assigned different sets of channels. The authors have described a number of such VCA schemes.

With dynamic channel assignment, when two mesh nodes need to communicate with each other, they need to switch to the same channel. The key challenge in this case is how to coordinate the switching decisions. The authors have described a number of dynamic channel assignment schemes.

Hybrid assignment strategies are attractive since they allow for simple coordination algorithms (as for the fixed assignment schemes) and also provides the flexibility
of dynamic channel assignment. The authors have described two such hybrid channel assignment schemes.

The key issues considered in the design of the existing channel assignment schemes are network connectivity, constraint on topology, interference minimization, effects of link revisits, traffic awareness, switching overhead (for dynamic and hybrid schemes), and control philosophy (i.e., centralized or distributed). Considering these factors, the authors provide a qualitative comparison among the different schemes.

Resource Allocation for Wireless Mesh Networks

Resource Allocation and Transmission Rate Control

Chapter 6, authored by Y. Xue, Y. Cui, and K. Nahrstedt, presents a generalized theoretical framework for resource allocation and transmission rate control in wireless mesh networks. The objective of this framework is to achieve optimal resource utilization and rate fairness among flows on an end-to-end basis. Based on this theoretical framework, the authors also present a price-based distributed algorithm for resource allocation which converges to the globally optimal solution.

The resource allocation problem is first formulated as an optimization problem for an abstract network model consisting of a set of resource elements (e.g., wireless links) which are shared by a set of flows. The objective is to maximize the aggregated utility (i.e., satisfaction) for all flows under constraints on capacities of the resource elements. Different fairness models such as weighted proportional fairness and max-min fairness can be implemented through the appropriate choice of the utility function. The solution of the optimization achieves both optimal resource utilization (i.e., Pareto optimal rate allocation) and fair allocation of transmission rate among end-to-end flows. Based on the Lagrangian form of the optimization formulation, a price-based decentralized solution can be obtained which depends on local decision of each resource element and exchange of control signals among them.

The authors show that for a multihop wireless mesh backbone network, a resource element is a facet of the polytope defined by the independent sets of the conflict graph of this network. It can be approximated by a maximal clique of the contention graph which basically represents a maximal distinct contention region in the network. The resource constraints in the network can then be represented by the achievable channel capacities in all of the maximal cliques in the contention graph. Subsequently, the end-to-end rate allocations can be obtained for the flows. For distributed implementation, a flow adapts its rate as a function of price it pays to all resource elements, where the price for a resource element is a non-negative, continuous, and increasing function of the total traffic served by that resource element. The authors show that the rate adaptation algorithm is stable and at the equilibrium each flow maximizes its utility.
Resource Allocation in Solar/Wind-Powered Mesh Nodes

Chapter 7, authored by A. A. Sayegh, T. D. Todd, and M. N. Smadi, presents some experimental results on resource allocation in hybrid solar/wind powered WLAN mesh nodes. Resource allocation in such a node involves assigning solar panel or wind turbine size, and battery capacity, and this resource allocation depends on the geographic location of the node. A sustainable energy WLAN mesh node includes a wind turbine and/or solar panel which are connected to a battery through a charge controller. The charge controller disconnects the battery from the power source to protect it from under- and over- charging. Specifically, when the residual battery energy falls below the maximum allowed level of discharge, the charge controller disconnects the node load and the node then experiences a radio outage. In a hybrid configuration, both solar panel and wind turbine are used.

The authors investigate the short-term statistics of the energy available from solar panel and wind turbines at two different locations, namely, Toronto, Ontario and Phoenix, Arizona. In the city of Toronto, a time distribution example of solar power and wind power shows positive correlation between them which suggests that a hybrid solar/wind powered node may not be cost effective. In the city of Phoenix, comparison of solar power and wind power shows that solar power dominates the wind power, and therefore, wind power alone or a hybrid wind/solar solution may not be feasible. However, the short-term statistics may not be sufficient to assess the optimal dimensioning of the power source in the mesh node. The long-term statistics would be required instead. Examples of long-term statistics show that performance metrics such as radio outage probability for the wind source and the solar source depends on the seasonal correlation between solar power and wind power in a geographic location. The desired level of sustainability of a given hybrid system for the different geographical locations can be obtained by properly choosing the wind turbine and battery sizes.

To minimize the total cost of a hybrid node (i.e., cost of battery, solar panel, and wind turbine) under given constraints on outage probability, battery size, solar panel and wind turbine size, the authors use an optimization formulation. This optimization model is solved numerically. To this end, the authors show that power saving at mesh access points can greatly reduce the cost which is almost proportional to the power consumption in the node.

Scheduling, Routing, and Cross-Layer Design

Link Scheduling and Routing in Wireless Mesh Networks

Chapter 8, authored by L. Badia, A. Erta, L. Lenzini, and M. Zorzi, presents a comprehensive survey on the state-of-the art of routing and link scheduling in wireless mesh networks. As has been mentioned before, for a wireless mesh network, the objective of a routing algorithm is to discover efficient paths to obtain high system throughput. Link scheduling at the medium access control layer is used to activate
the communication links with an objective to ensuring the desired level of network connectivity under interference constraints. The interference models, which are particularly important when designing link scheduling (or activation) and routing algorithms, can be of three types - physical, protocol, and measurement-based interference models. With a physical interference model, the feasibility of simultaneous link activations is determined by the SINR at the receivers. Note that, the packet error rate at a receiver is a monotonically decreasing function of SINR. With a protocol interference model, simultaneous transmissions result in incorrect decoding of a received packet. The measurement-based interference model takes an a priori approach to interference characterization.

The existing works on link scheduling and routing in wireless ad hoc and/or sensor networks are often not suitable in the context of wireless mesh networks due to the dissimilar design/optimization goals and/or oversimplified interference models. Designing a framework for joint scheduling and routing which considers the network requirements, resource constraints (e.g., number of radios, channels), radio transceiver constraints, and realistic interference models is an interesting research challenge.

The authors propose a graph-based approach to design a framework for joint link scheduling and routing through link activation. In this framework, the radio transceiver constraints (e.g., half-duplexity) and link directionality are taken into account. The interference is characterized by a physical interference model which is more accurate than that under protocol interference models from the viewpoint of theoretical analysis of wireless mesh networks. The authors assume a centralized space time division multiple access (STDMA) scheme to obtain an efficient transmission scheme through link activation. The mesh access point nodes in the mesh backbone network finds the link activation patterns in a centralized manner and communicates it with the other nodes. The authors obtain the performance bounds for the minimal time scheduling problem/shortest-time link activation pattern (i.e., obtaining the link activation pattern which delivers a given amount of traffic from non-gateway mesh nodes to the gateway mesh nodes in the shortest possible time). The authors also carry out some numerical investigations on the performance of the proposed framework for different interference models.

Quality-Aware Routing Metrics in Wireless Mesh Networks

Chapter 9, authored by C. E. Koksal, presents a comparative study among seven different link cost metrics for routing in wireless mesh networks. The cost metric for a link refers to the cost of forwarding a packet along that link. The considered link cost metrics are: hop count, per-hop round trip time (RTT), per hop packet pair delay (PktPair), quantized loss rate, expected transmission count (ETX), modified ETX (mETX), and effective number of transmissions (ENT).

The traditional hop count-based routing (i.e., minimum hop routing), although simple and requires minimal amount of measurement, does not perform satisfactorily in presence of link variability. Per-hop round trip time is a delay-based link cost metric, which is calculated by a mesh node as the exponentially weighted moving
average of the RTT samples for each of its neighbors. This metric takes into account the factors such as queueing delay, channel quality, and channel contention. However, since RTT varies with varying load, using this routing metric may lead to route instability (due to the self interference effect). With this routing metric, the optimal path assignments may change more frequently compared to the hop count, which may result in reduced network throughput. Also, this metric responds to channel variability at time scales longer than tens of packets.

The PktPair metric is obtained as the difference between the times of reception of two successive packets. Therefore, it does not take into account the queueing and processing delay at a node. Although it suppresses the route instability effect to some extent, the overhead associated with it is higher than that due to per hop RTT. The quantized loss rate is based on the end-to-end packet loss probability. This metric does not take the link bandwidth into account, and therefore, low bandwidth paths could be chosen for routing.

ETX for a wireless link refers to the estimated expected number of transmissions required to transfer a packet successfully over that link. This metric depends only on the link level packet errors due to channel impairments, and therefore, the effects of self interference is reduced. ETX can improve the throughput performance significantly compared to the hop count metric, however, it may perform poorly under highly variable and bursty error situations. The mETX metric overcomes the limitations of ETX in the presence of channel variability. This metric is a function of the mean and the variance of the bit error probability summed over a packet duration. It offers a higher throughput performance compared to the ETS metric. However, the main drawback of this metric is the complexity of estimation of the mean and variance of bit error probability. Also, estimation error may impact its performance significantly.

The ENT metric is structurally similar to the mETX metric and it uses the exactly same parameters and the channel estimation procedure as mETX. It is used to find routes which satisfy certain desired end-to-end performance (e.g., packet loss rate at the transport level) requirements. The metric mETX can be considered as a special case of the ENT metric.

The authors also present a unified geometric framework to compare the different routing metrics. This framework combines the mean and standard deviation of the bit error rate process. In this framework, it is possible to define a feasible region using which links can be selected to achieve the desired routing performance.

Cross-Layer Solutions for Traffic Forwarding in Wireless Mesh Networks

Chapter 10, authored by V. Baiamonte, C. Casetti, C. F. Chiasserini, and M. Fiore, deals with the problem of joint design of MAC and routing schemes for multihop communication in IEEE 802.11-based wireless mesh networks. Specifically, the authors consider the problem of designing efficient relaying schemes based on the cross-layer design principles which take into account the quality of the wireless links in an 802.11-based multi-rate WLAN.
For traffic flow from a mesh gateway to wireless mesh nodes, the authors present two schemes for packet forwarding, namely, the split queues (SQ) approach and the access category (AC) approach. With the former approach, two queues are maintained at each node for relay traffic and local traffic. With the latter approach, several queues are implemented at the MAC layer, each of which is associated with a priority level (e.g., implementable through the access categories defined in IEEE 802.11e EDCA). Prioritizing relay traffic over local traffic provides an incentive to the nodes to act as relays. Simulation results for a network topology with single and multiple relays serving TCP and UDP flows show that the AC approach can provide significant gain in throughput while the SQ approach can provide very high fairness in throughput.

The authors present a fair relay selection algorithm (FRSA) which is an extension of the optimized link state routing (OLSR) protocol designed for wireless ad hoc networks. OLSR is a table-driven and a proactive protocol which exchanges topology information periodically with other nodes in the network. The route from a given node to any destination node in the network is formed by relay nodes. A relay node announces to the network that it has reachability to the nodes which have selected it as the relay node. The proposed FRSA is a relay quality-aware routing extension of OLSR. In FRSA, each node performs a relay quality-aware routing to its two-hop neighborhood. Simulation results show that a significant throughput gain with fair channel access can be achieved with FRSA when compared to OLSR.

Multiple Antenna Techniques for Wireless Mesh Networks

Chapter 11, authored by A. Gkelias and K. K. Leung, discusses the research challenges associated with the deployment of multiple antenna technologies in wireless mesh networks. In particular, the authors focus on the design of medium access control and routing algorithms in wireless mesh networks employing smart antenna technology. Multiple antenna technology includes fixed beam antenna techniques, adaptive antenna techniques, and multiple-input multiple-output (MIMO) coding techniques which can be highly beneficial to improving overall performance of wireless mesh networks. However, employment of multiple antenna (or smart antenna) techniques in a wireless mesh networking environment gives rise to unique problems such as deafness, hidden and exposed terminals, and multi-stream interference. Novel medium access control and routing protocols need to be designed to address the above problems.

The authors first describe the wireless mesh network and channel characteristics considering different propagation scenarios, interference characteristics in different scenarios, and other constraints such as the limitations in total effective radiation power. Then an overview of the different smart antenna techniques is provided. Two basic types of smart antennas, namely, directional antennas (fixed beams) and adaptive antenna arrays, are considered. Directional antenna techniques, which include switched-beam antennas, steered-beam antennas (or dynamically phased array antennas), can provide high SINR gain in presence of strong line-of-sight component,
however, their performances degrade in multi-path environments. Adaptive antenna
techniques, which include adaptive antenna arrays and MIMO techniques, can pro-
vide high gain in the direction of desired signals and nulls in the direction of unde-
sired signals (i.e., interference). In particular, the MIMO techniques can exploit the
multi-path fading effects to enhance the transmission rate (i.e., multiplexing gain)
or enhance the transmission reliability (i.e., diversity gain) without additional band-
width requirements.

One of the major issues related to the use of multiple antenna (or smart antenna)
techniques in wireless mesh networks is to mitigate the deafness problem. This prob-
lem arises due to the use of directional antennas when a transmitter fails to commu-
nicate with its intended receiver. However, deafness can be also exploited in some
cases to mitigate interference. Directional transmission may also augment the clas-
sical hidden/exposed terminal problem in wireless networks. Again, in presence of
directional antennas, unsuccessful transmissions due to packet collision and deaf-
ness need to be treated differently at the higher layers. In a MIMO-based wireless
mesh network, the medium access control protocol should use the optimal number of
simultaneous transmissions, allocate appropriate number of streams per transmitt-
receiver pair, and perform power allocation accordingly. Also, the tradeoff between
multiplexing and diversity gain should be taken into account. The routing protocols
in a MIMO-based wireless mesh network should consider the MIMO parameters
for route discovery and maintenance. If the higher layer protocols are not carefully
designed, the multiple antenna techniques can have negative impact on the overall
network performance.

The authors then discuss several distributed medium access control protocols
for multiple antenna-based multihop wireless networks. The interactions between
medium access and routing protocols in presence of smart antennas have been eval-
uated in some works in the literature. These works primarily focused in improv-
ing network connectivity. Design and implementation of efficient quality of service
(QoS)-aware routing protocols which exploit the multiple antenna techniques is a
grand research challenge.

Security in Wireless Mesh Networks

Chapter 12, authored by W. Zhang, Z. Wang, S. K. Das, and M. Hassan, addresses the
security issues in wireless mesh networks. The main challenges for securing wireless
mesh networks arise due to the requirements of authentication, secure routing, secure
location information (of mesh routers), and to defend against virus attacks.

Authentication is required to distinguish malicious information from legitimate
information. An authentication mechanism is generally implemented with the help of
public key infrastructure (PKI) and certification authority (CA). With the PKI mech-
anism, each user has a pair of cryptographic keys: public key and private key. A
message encrypted with the public key (which is known to all the users) can only be
decrypted by using the corresponding private key, and vice versa. The CA involved
in the authentication procedure signs the binding of an entity’s identity and its public
key with its private key. It is assumed that the signed certificates by the CA are globally trusted in the network. Due to the absence of any pre-established trusted network infrastructure in wireless mesh networks, distributed CA schemes are desirable. The authors describe a number of such CA schemes.

The routing protocols for a wireless mesh network are vulnerable to both external and internal attacks. External attackers can inject fabricated routing information into the network or maliciously alter the contents of routing messages. An internal attack is launched from within a node when an attacker gains full control of the node. To prevent external attackers from sending fabricated routing information, cryptography-based authentication methods incorporated in the routing protocols can be used. The authors describe several of such schemes. Also, several possible approaches to detect and countermeasure the internal attacks to routing protocols are discussed.

Securing the location information of wireless mesh routers is crucial for certain type of routing schemes (e.g., geographic routing schemes). Two methods for securing location information are generally used - correctly computing the location information and verifying the location claims. The authors review several works based on these two methods.

Computer viruses also pose threats to security in wireless mesh networks. There have been research efforts towards modeling the virus propagation problem in wireless networks. Epidemic theory used in Biology is one popular technique used to investigate the virus spreading problem. Two schemes which use Epidemic theory to model the propagation of viruses and compromised nodes, respectively, are discussed.

The authors also outline a number of security-related research issues in wireless mesh networks. These include securing the medium access control protocols, defending against denial of service (DoS) attacks at the different layers in the protocol stack, designing cross-layer framework for self-adapted security mechanisms, customizing the security schemes based on the type of network (in a heterogeneous wireless mesh environment), and trust establishment and management. All of these issues represent fertile areas of future research in wireless mesh networks.

Conclusion

We have provided a summary of the contributed articles in this book. We hope this summary would be helpful to follow the rest of the book easily. We believe that the readers will find the rich set of references in each of the articles very valuable. We would like to express our sincere appreciation to all of the authors for their excellent contributions and their patience during the publication process of the book. We hope this book will be useful to both researchers and practitioners in this emerging area.
Wireless Mesh Networks
Architectures and Protocols
Hossain, E.; Leung, K.K. (Eds.)
2008, XXIV, 333 p., Hardcover
ISBN: 978-0-387-68838-1