Contents

Preface xi

Chapter 1 Foundational Material 1
1.1 Vector Space 1
 1.1.1 The General Linear Group 1
 1.1.2 Vectors and Tensors 3
1.2 Differentiable Manifolds 5
 1.2.1 The Tangent Space, the Frame Bundle, and Tensor Fields 5
 1.2.2 Mappings of Differentiable Manifolds 7
 1.2.3 Exterior Algebra, Pfaffian Forms, and the Cartan Lemma 9
 1.2.4 The Structure Equations of the General Linear Group 12
 1.2.5 The Frobenius Theorem 12
 1.2.6 The Cartan Test 13
 1.2.7 The Structure Equations of a Differentiable Manifold 15
 1.2.8 Affine Connections on a Differentiable Manifold 18
1.3 Projective Space 19
 1.3.1 Projective Transformations, Projective Frames, and the Structure Equations of a Projective Space 19
 1.3.2 The Duality Principle 22
 1.3.3 Projectivization 24
 1.3.4 Classical Homogeneous Spaces (Affine, Euclidean, Non-Euclidean) and Their Transformations 25
1.4 Specializations of Moving Frames 28
 1.4.1 The First Specialization 28
 1.4.2 Power Series Expansion of an Equation of a Curve 30
 1.4.3 The Osculating Conic to a Curve 32
 1.4.4 The Second and Third Specializations and Their Geometric Meaning 33
 1.4.5 The Osculating Cubic to a Curve 35
Contents

1.4.6 Two More Specializations and Their Geometric Meaning .. 37
1.4.7 Conclusions .. 39

1.5 Some Algebraic Manifolds .. 41
1.5.1 Grassmannians ... 41
1.5.2 Determinant Submanifolds ... 44

Notes .. 46

Chapter 2 Varieties in Projective Spaces and Their Gauss Maps

2.1 Varieties in a Projective Space .. 49
2.1.1 Equations of a Variety ... 49
2.1.2 The Bundle of First-Order Frames Associated with a Variety 51
2.1.3 The Prolongation of Basic Equations ... 53

2.2 The Second Fundamental Tensor and the Second Fundamental Form 54
2.2.1 The Second Fundamental Tensor, the Second Fundamental Form, and the Osculating Subspace of a Variety ... 54
2.2.2 Further Specialization of Moving Frames and Reduced Normal Subspaces 56
2.2.3 Asymptotic Lines and Asymptotic Cone ... 58
2.2.4 The Osculating Subspace, the Second Fundamental Form, and the Asymptotic Cone of the Grassmannian .. 59
2.2.5 Varieties with One-Dimensional Normal Subspaces 61

2.3 Rank and Defect of Varieties with Degenerate Gauss Maps 63

2.4 Examples of Varieties with Degenerate Gauss Maps .. 65

2.5 Application of the Duality Principle .. 70
2.5.1 Dual Variety .. 70
2.5.2 The Main Theorem ... 72
2.5.3 Cubic Symmetroid ... 76
2.5.4 Singular Points of the Cubic Symmetroid ... 78
2.5.5 Correlative Transformations .. 80

2.6 Hypersurface with a Degenerate Gauss Map Associated with a Veronese Variety .. 81
2.6.1 Veronese Varieties and Varieties with Degenerate Gauss Maps 81
2.6.2 Singular Points ... 85

Notes .. 86
Chapter 3 Basic Equations of Varieties with Degenerate Gauss Maps

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The Monge-Ampère Foliation</td>
<td>91</td>
</tr>
<tr>
<td>3.1.1</td>
<td>The Monge-Ampère Foliation Associated with a Variety with a Degenerate Gauss Map</td>
<td>91</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Basic Equations of Varieties with Degenerate Gauss Maps</td>
<td>92</td>
</tr>
<tr>
<td>3.1.3</td>
<td>The Structure of Leaves of the Monge–Ampère Foliation</td>
<td>95</td>
</tr>
<tr>
<td>3.1.4</td>
<td>The Generalized Griffiths–Harris Theorem</td>
<td>96</td>
</tr>
<tr>
<td>3.2</td>
<td>Focal Images</td>
<td>99</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The Focus Hypersurfaces</td>
<td>99</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The Focus Hypercones</td>
<td>101</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Examples</td>
<td>102</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The Case $n = 2$</td>
<td>103</td>
</tr>
<tr>
<td>3.2.5</td>
<td>The Case $n = 3$</td>
<td>104</td>
</tr>
<tr>
<td>3.3</td>
<td>Some Algebraic Hypersurfaces with Degenerate Gauss Maps in \mathbb{P}^4</td>
<td>105</td>
</tr>
<tr>
<td>3.4</td>
<td>The Sacksteder–Bourgain Hypersurface</td>
<td>116</td>
</tr>
<tr>
<td>3.4.1</td>
<td>The Sacksteder Hypersurface</td>
<td>116</td>
</tr>
<tr>
<td>3.4.2</td>
<td>The Bourgain Hypersurface</td>
<td>118</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Local Equivalence of Sacksteder’s and Bourgain’s Hypersurfaces</td>
<td>123</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Computation of the Matrices C_i and B^a for Sacksteder–Bourgain Hypersurfaces</td>
<td>125</td>
</tr>
<tr>
<td>3.5</td>
<td>Complete Varieties with Degenerate Gauss Maps in Real Projective and Non-Euclidean Spaces</td>
<td>126</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Parabolic Varieties</td>
<td>126</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Examples</td>
<td>128</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>

Chapter 4 Main Structure Theorems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Torsal Varieties</td>
<td>135</td>
</tr>
<tr>
<td>4.2</td>
<td>Hypersurfaces with Degenerate Gauss Maps</td>
<td>141</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Sufficient Condition for a Variety with a Degenerate Gauss Map to be a Hypersurface in a Subspace of \mathbb{P}^N</td>
<td>141</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Focal Images of a Hypersurface with a Degenerate Gauss Map</td>
<td>144</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Examples of Hypersurfaces with Degenerate Gauss Maps</td>
<td>145</td>
</tr>
</tbody>
</table>
Contents

4.3 Cones and Affine Analogue of the Hartman–Nirenberg Cylinder Theorem 146
4.3.1 Structure of Focus Hypersurfaces of Cones 146
4.3.2 Affine Analogue of the Hartman–Nirenberg Cylinder Theorem 149

4.4 Varieties with Degenerate Gauss Maps with Multiple Foci and Twisted Cones 151
4.4.1 Basic Equations of a Hypersurface of Rank r with r-Multiple Focus Hyperplanes 151
4.4.2 Hypersurfaces with Degenerate Gauss Maps of Rank r with a One-Dimensional Monge–Ampère Foliation and r-Multiple Foci 152
4.4.3 Hypersurfaces with Degenerate Gauss Maps with Double Foci on Their Rectilinear Generators in the Space P^4 .. 154
4.4.4 The Case $n = 3$ (Continuation) 164

4.5 Reducible Varieties with Degenerate Gauss Maps 165
4.5.1 Some Definitions 165
4.5.2 The Structure of Focal Images of Reducible Varieties with Degenerate Gauss Maps 165
4.5.3 The Structure Theorems for Reducible Varieties with Degenerate Gauss Maps 166

4.6 Embedding Theorems for Varieties with Degenerate Gauss Maps ... 169
4.6.1 The Embedding Theorem 169
4.6.2 A Sufficient Condition for a Variety with a Degenerate Gauss Map to be a Cone 172

Notes .. 172

Chapter 5 Further Examples and Applications of the Theory of Varieties with Degenerate Gauss Maps 175

5.1 Lightlike Hypersurfaces in the de Sitter Space and Their Focal Properties 176
5.1.1 Lightlike Hypersurfaces and Physics 176
5.1.2 The de Sitter Space .. 177
5.1.3 Lightlike Hypersurfaces in the de Sitter Space 181
5.1.4 Singular Points of Lightlike Hypersurfaces in the de Sitter Space 184
5.1.5 Lightlike Hypersurfaces of Reduced Rank in the de Sitter Space .. 192
5.2 Induced Connections on Submanifolds 195
 5.2.1 Congruences and Pseudocongruences in a
 Projective Space 195
 5.2.2 Normalized Varieties in a Multidimensional
 Projective Space 198
 5.2.3 Normalization of Varieties of Affine and
 Euclidean Spaces 203

5.3 Varieties with Degenerate Gauss Maps Associated with
 Smooth Lines on Projective Planes over
 Two-Dimensional Algebras 207
 5.3.1 Two-Dimensional Algebras and
 Their Representations 207
 5.3.2 The Projective Planes over the Algebras C, C^1, C^0,
 and M .. 208
 5.3.3 Equation of a Straight Line 209
 5.3.4 Moving Frames in Projective Planes over Algebras ... 210
 5.3.5 Focal Properties of the Congruences
 K, K^1, and K^0 211
 5.3.6 Smooth Lines in Projective Planes 214
 5.3.7 Singular Points of Varieties Corresponding to Smooth
 Lines in the Projective Spaces over
 Two-Dimensional Algebras 215
 5.3.8 Curvature of Smooth Lines over Algebras 217

Notes .. 218

Bibliography .. 221

Symbols Frequently Used 237

Author Index .. 239

Subject Index ... 241
Differential Geometry of Varieties with Degenerate Gauss Maps
Akivis, M.A.; Goldberg, V.V.
2004, XXI, 255 p. 16 illus., Hardcover