Preface

Probabilistic techniques in computer programs and systems are becoming more and more widely used, for increased efficiency (as in random algorithms), for symmetry breaking (distributed systems) or as an unavoidable artefact of applications (modelling fault-tolerance). Because interest in them has been growing so strongly, stimulated by their many potential uses, there has been a corresponding increase in the study of their correctness — for the more widespread they become, the more we will depend on understanding their behaviour, and their limits, exactly.

In this volume we address that last concern, of understanding: we present a method for rigorous reasoning about probabilistic programs and systems. It provides an operational model — “how they work” — and an associated program logic — “how we should reason about them” — that are designed to fit together. The technique is simple in principle, and we hope that with it we will be able to increase dramatically the effectiveness of our analysis and use of probabilistic techniques in practice.

Our contribution is a probabilistic calculus that operates at the level of the program text, and it is light-weight in the sense that the amount of reasoning is similar in size and style to what standard assertional techniques require. In the fragment at right, for example, each potential loop entry occurs with probability 1/2; the resulting iteration establishes \(x \geq 1/2 \) with probability exactly \(p \) for any \(0 \leq p \leq 1 \). It is thus an implementation of the general operation choose with probability \(p \), but it uses only simple tests of unbiased random bits (to implement the loop guard). It should take only a little quantitative logic to confirm that claim, and indeed we will show that just four lines of reasoning suffice.

Economy and precision of reasoning are what we have come to expect for standard programs; there is no reason we should accept less when they are probabilistic.

The cover illustration comes from page 59.
The program fragment is adapted from Fig. 7.7.10 on page 210.
Scope and applicability

Methods for the analysis of probabilistic systems include automata, labelled transition systems, model checking and logic (e.g. dynamic or temporal). Our work falls into the last category: we overlay the Hoare-logic paradigm with probabilistic features imported from Markov processes, taking from each the essential characteristics required for a sound mathematical theory of refinement and proof. The aim is to accommodate modelling and analysis of both sequential and distributed probabilistic systems, and to allow — even encourage — movement between different levels of abstraction.

Our decision to focus on logic — and a proof system for it — was motivated by our experience with logical techniques more generally: they impose a discipline and order which promotes clarity in specifications and design; the resulting proofs can often be carried out, and checked, with astonishing conciseness and accuracy; and the calculation rules of the logic lead to an algebra that captures useful equalities and inequalities at the level of the programs themselves.

Although we rely ultimately on an operational model, we use it principally to validate the logic (and that, in turn, justifies the algebra) — direct reliance on the model’s details for individual programs is avoided if possible. (However we do not hesitate to use such details to support our intuition.) We feel that operational reasoning is more suited to the algorithmic methods of verification used by model checkers and simulation tools which can, for specific programs, answer questions that are impractical for the general approach that a logic provides.

Thus the impact of our approach is most compelling when applied to programs which are intricate either in their implementation or their design, or have generic features such as undetermined size or other parameters. They might appear as probabilistic source-level portions of large sequential programs, or as abstractions from the probabilistic modules of a comprehensive system-level design; we provide specific examples of both situations. In the latter case the ability to abstract modules’ properties has a significant effect on the overall verification enterprise.

Technical features

Because we generalise the well-established assertional techniques of specifications, pre- and postconditions, there is a natural continuity of reasoning style evident in the simultaneous use of the new and the familiar approaches: the probabilistic analysis can be deployed more, or less, as the situation warrants.

A major feature is that we place probabilistic choice and abstraction together, in the same framework, without having to factor either of them out for separate treatment unless we wish to (as in fact we do in Chap. 11). This justifies the abstraction and refinement of our title, and is what gives
us access to the stepwise-development paradigm of standard programming
where systems are “refined” from high levels of abstraction towards the low
levels that include implementation detail.

As a side-effect of including abstraction, we retain its operational
counterpart demonic choice as an explicit operator \sqcap in the cut-down
probabilistic programming language $pGCL$ which we use to describe our
algorithms — that is, the new probabilistic choice operator $p\sqcup$ refines
demonic choice rather than replacing it. In Chap. 8 we consider angelic choice
\sqcup as well, which is thus a further refinement.

Probabilistic and demonic choice together allow an elementary treatment
of the hybrid that selects “with probability at least p” (or similarly “at most
p”), an abstraction which accurately models our unavoidable ignorance of
exact probabilities in real applications. Thus in our mathematical model
we are able to side-step the issue of “approximate refinement.”

That is, rather than saying “this coin refines a fair coin with probability
95%,” we would say “this coin refines one which is within 5% of being
fair.” This continues the simple view that either an implementation refines
a specification or it does not, which simplicity is possible because we have
retained the original treatment in terms of sets of behaviours: abstraction
is inclusion; refinement is reverse inclusion; and demonic choice is union.
In that way we maintain the important relationship between the three
concepts. (Section 6.5 on pp. 169ff illustrates this geometrically.)

Organisation and intended readership

The material is divided into three major parts of increasing specialisation,
each of which can to a large extent be studied on its own; a fourth part
contains appendices. We include a comprehensive index and extensive cross-
referencing.

Definitions of notation and explanations of standard mathematical tech-
niques are carefully given, rather than simply assumed; they appear as
footnotes at their first point of use and are made visually conspicuous by
using SMALL CAPS for the defined terms (where grammar allows). Thus
in many cases a glance should be sufficient to determine whether any foot-
note contains a definition. In any case all definitions, whether or not in
footnotes, may be retrieved by name through the index; and those with
numbers are listed in order at page xvii.

Because much of the background material is separated from the main
text, the need for more advanced readers to break out of the narrative
should be reduced. We suggest that on first reading it is better to consult
the footnotes only when there is a term that appears to require definition
— otherwise the many cross-references they contain may prove distracting,
as they are designed for “non-linear” browsing once the main ideas have
already been assimilated.
Part I, *Probabilistic guarded commands*, gives enough introduction to the probabilistic logic to prove properties of small programs such as the one earlier, for example at the level of an undergraduate course for Formal-Methods-inclined students that explains “what to do” but not necessarily “why it is correct to do that.” These would be people who need to understand how to reason about programs (and why), but would see the techniques as intellectual tools rather than as objects of study in their own right.

We have included many small examples to serve as models for the approach (they are indexed under *Programs*), and there are several larger case studies (for example in Chap. 3).

Part II, *Semantic structures*, develops in detail the mathematics on which the probabilistic logic is built and with which is it justified. That is, whereas the earlier sections present and illustrate the new reasoning techniques, this part shows where they have come from, why they have the form they do and — crucially — why they are correct.

That last point is especially important for students intending to do research in logic and semantics, as it provides a detailed and extended worked example of the fundamental issue of proving reasoning techniques *themselves* to be correct (more accurately, “valid”), a higher-order concept than the more familiar theme of the previous part in which we presented the techniques *ex cathedra* and used them to verify particular programs.

This part would thus be suitable for an advanced final-year undergraduate or first-year graduate course, and would fit in well with other material on programming semantics. It defines and illustrates the use of many of the standard tools of the subject: lattices, approximation orders, fixed points, semantic injections and retractions *etc.*

Part III, *Advanced topics*, concentrates on more exotic methods of specification and design, in this case probabilistic temporal/modal logics. Its final chapter, for example, contains material only recently discovered and leads directly into an up-to-date research area. It would be suitable for graduate students as an introduction to this specialised research community.

Part IV includes appendices collecting material that either leads away from the main exposition — *e.g.* alternative approaches and why we have not taken them — or supports the text at a deeper level, such as some of the more detailed proofs.

It also contains a short list of algebraic laws that demonic/probabilistic program fragments satisfy, generated mainly by our needs in the examples and proofs of earlier sections. An interesting research topic would be a more systematic elaboration of that list with a view to incorporating it into probabilistic Kleene- or omega algebras for distributed computations.
Overall, readers seeking an introduction to probabilistic formal methods
could follow the material in order from the beginning. Those with more
experience might instead sample the first chapter from each part, which
would give an indication of the scope and flavour of the approach generally.

Original sources

Much of the material is based on published research, done with our col-
leagues, in conference proceedings and journal articles; but here it has been
substantially updated and rationalised — and we have done our best to
bring the almost ten years’ worth of developing notation into a uniform
state.

For self-contained presentations of the separate topics, and extra
background, readers could consult our earlier publications as shown
overleaf.

At the end of each chapter we survey the way in which our ideas have
been influenced by — and in some cases adopted from — the work of other
researchers, and we indicate some up-to-date developments.

Acknowledgements

Our work on probabilistic models and logic was carried out initially at
the University of Oxford, together with Jeff Sanders and Karen Seidel and
with the support of the UK’s *Engineering and Physical Sciences Research
Council* (the EPSRC) during two projects led by Sanders and Morgan over

Morgan spent sabbatical semesters in 1995–6 at the University of
Utrecht, as the guest of S. Doaitse Swierstra, and at the University of
Queensland and the Software Verification and Research Centre (SVRC),
as the guest of David Carrington and Ian Hayes. The foundational work
the EPSRC projects produced during that period — sometimes across great
distances — benefited from the financial support of those institutions but
especially from the academic environment provided by the hosts and by
the other researchers who were receptive to our initial ideas [MMS96].

Ralph Back at Åbo Akademi hosted our group’s visit to Turku for a
week in 1996 during which we were able to explore our common interests
in refinement and abstraction as it applied to the new domain; that led
later to a three-month visit by Elena Troubitsyna from the *Turku Center for
Computer Science* (TUCS), to our group in Oxford in 1997, and contributed
to what has become Chap. 4 [MMT98].

David Harel was our host for a two-week visit to Israel in 1996, dur-
ing which we presented our ideas and benefited from the interaction with
researchers there.
Chapters’ dependence on original sources

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MM99b, SMM, MMS00</td>
</tr>
<tr>
<td>2</td>
<td>Mor96, MMS00</td>
</tr>
<tr>
<td>3</td>
<td>MM99b</td>
</tr>
<tr>
<td>4</td>
<td>MMT98</td>
</tr>
<tr>
<td>5</td>
<td>MMS96</td>
</tr>
<tr>
<td>6</td>
<td>is new material</td>
</tr>
<tr>
<td>7</td>
<td>Mor96, MM01b</td>
</tr>
<tr>
<td>8</td>
<td>MM01a</td>
</tr>
<tr>
<td>9</td>
<td>MM97</td>
</tr>
<tr>
<td>10</td>
<td>MM99a</td>
</tr>
<tr>
<td>11</td>
<td>MM02</td>
</tr>
</tbody>
</table>

The sources listed opposite are in chronological order of writing, thus giving roughly the logical evolution of the ideas.

Subsequently we have continued to work with Sanders and with Ken Robinson, Thai Son Hoang and Zhendong Jin, supported by the Australian Research Council (ARC) over the (coming) years 2001–8 in their Large Grant and Discovery programmes, at the Universities of Macquarie and of New South Wales.

Joe Hurd from the Computer Laboratory at Cambridge University visited us in 2002, with financial assistance from Macquarie University; and Orieta Celiku was supported by TUCS when she visited in 2003. Both worked under McIver’s direction on the formalisation of pGCL, and its logic, in the mechanised logic HOL.

Hoang, Jin and especially Eric Martin have helped us considerably with their detailed comments on the typescript; also Ralph Back, Ian Hayes, Michael Huth, Quentin Miller and Wayne Wheeler have given us good advice. Section B.1 on the algebraic laws satisfied by probabilistic programs has been stimulated by the work (and the critical eyes) of Steve Schneider and his colleagues at Royal Holloway College in the U.K.

We thank the members of IFIP Working Groups 2.1 and 2.3 for their many comments and suggestions.

LRI Paris
May 2004

Annabelle McIver
Carroll Morgan

In memoriam AJMvG
List of sources in order of writing

Abstraction, Refinement and Proof for Probabilistic Systems
McIver, A.; Morgan, C.C.
2005, XX, 388 p. 63 illus., Hardcover