Contents

Part I Experimental Realization

1 Elements for Designing an X-Ray Diffraction Experiment . 5
 1.1 X-Ray Sources ... 5
 1.2 Optical Elements .. 11
 1.3 Detectors .. 23

2 Diffractometers and Reflectometers 31
 2.1 X-Ray Reflectometers 32
 2.2 High-Resolution Diffractometer 37
 2.3 Limits of the Use of Powder Diffractometers 39
 2.4 Grazing-Incidence Diffraction 40

3 Scans and Resolution in Angular and Reciprocal Space 43
 3.1 Coherence of Radiation and Correlation of Sample Properties 44
 3.2 Scans Across the Reciprocal Space 47
 3.3 Resolution Elements 51

Part II Basic Principles

4 Basic Principles ... 63
 4.1 Description of the X-Ray Wavefield in Vacuum 63
 4.2 General Description of the Scattering Process 65
 4.3 Direction of Scattered Waves 68

5 Kinematical Theory .. 75
 5.1 Scattering From a Perfect Layer 75
 5.2 Two-Beam Approximation 81
 5.3 Kinematical Scattering From Deformed Crystals 85
 5.4 Kinematical Scattering From Multilayers 87
 5.5 Kinematical Scattering From Randomly Deformed Crystals 91
6 **Dynamical Theory** .. 97
6.1 The Wave Equation for a Periodic Medium 97
6.2 Boundary Conditions 99
6.3 X-Ray Reflection .. 102
6.4 Two-Beam Diffraction 104
6.5 Layered Samples .. 112
 6.5.1 Multilayers: X-Ray Reflection 116
 6.5.2 Multilayers: Conventional X-Ray Diffraction 117
6.6 A Comment on the Three-Beam Diffraction 119

7 **Semikinematical Theory** 123
7.1 Basic Formulas ... 123
7.2 Examples .. 125
 7.2.1 Small-Angle Scattering from Empty Holes in a
 Semi-infinite Matrix 125
 7.2.2 Small-Angle Scattering from Pyramidal Islands
 Randomly Placed on a Flat Surface 128
 7.2.3 Diffuse Scattering in Diffraction from Empty Holes in
 a Crystal .. 129
 7.2.4 Diffraction from a Thin Layer on a Semi-infinite
 Substrate .. 132

Part III Solution of Experimental Problems

8 **Determination of Layer Thicknesses of Single Layers and
 Multilayers** .. 143
8.1 X-Ray Reflection by Single Layers 144
8.2 X-Ray Reflection by Periodical Multilayers 153
8.3 Coplanar X-Ray Diffraction by Single Layers 161
8.4 Coplanar X-Ray Diffraction by Periodical Superlattices .. 166
8.5 X-Ray Grazing Incidence Diffraction 171
8.6 Buried Layers .. 174

9 **Lattice Parameters and Strains in Epitaxial Layers and
 Multilayers** .. 179
9.1 Conventional Coplanar Diffraction 179
9.2 Reciprocal-Space Mapping 190
9.3 Coplanar Extremely Asymmetric Diffraction 193
9.4 Utilization of Anomalous Scattering Effects 197
9.5 Grazing-Incidence Diffraction 198
10 Diffuse Scattering From Volume Defects in Thin Layers ... 205
 10.1 Weak and Strong Defects .. 205
 10.2 Diffuse Scattering From Weak Defects 207
 10.3 Weak Defects in a Subsurface Layer 215
 10.4 Small-Angle Scattering From Small Defects in Thin Layers 223
 10.5 Diffuse Scattering From an Array of Misfit Dislocations 225
 10.6 Diffuse Scattering From Mosaic Layers 228

11 X-Ray Scattering by Rough Multilayers ... 235
 11.1 Interface Roughness, Scattering Potential, and Statistical Properties ... 236
 11.2 Specular X-Ray Reflection .. 241
 11.3 Non-Specular X-Ray Reflection .. 252
 11.3.1 General Approach .. 252
 11.3.2 Resonant Diffuse Scattering 260
 11.3.3 Dynamical Scattering Effects 263
 11.3.4 Non-Coplanar X-Ray Reflection 265
 11.4 Interface Roughness in Surface-Sensitive Diffraction Methods 267

Part IV X-Ray Scattering by Laterally Structured Semiconductor Nano-Structures

12 X-Ray Scattering by Artificially Lateral Semiconductor Nanostructures ... 279
 12.1 The Scattering Potential and the Structure Amplitude 280
 12.2 Kinematical Theory ... 286
 12.3 Dynamical Theory ... 287
 12.4 Distorted Wave-Born Approximation for Grazing-Incidence Diffraction ... 291
 12.5 Distorted Wave-Born Approximation for X-Ray Diffraction 294
 12.6 Determination of the Lateral Superstructure 299
 12.6.1 Grating Period and the Etching Depth 299
 12.6.2 Reciprocal-Space Mapping .. 300
 12.6.3 Orientation of the Grating Pattern 303
 12.6.4 Grating Shape .. 305
 12.7 Superlattice Surface Gratings .. 310
 12.8 Shape and the Morphological Set-Up of a Multilayer Grating 311
 12.9 Non-Epitaxial Gratings .. 312

13 Strain Analysis in Periodic Nanostructures .. 317
 13.1 Strain Analysis in Surface Gratings 318
 13.1.1 Simple Strain Models .. 319
 13.1.2 Full Quantitative Strain Analysis by Coupling Elasticity Theory and X-Ray Diffraction ... 324
High-Resolution X-Ray Scattering
From Thin Films to Lateral Nanostructures
Pietsch, U.; Holy, V.; Baumbach, T.
2004, XVI, 408 p. 389 illus., Hardcover
ISBN: 978-0-387-40092-1