TABLE OF CONTENTS

PROLOGUE

1

CHAPTER ONE

BACKGROUND AND CONTEXT

Summary

1. TALUM: a general introduction
2. A certain type of TALUM research
3. The TALUM studies the book draws on

CHAPTER TWO

METHOD, PROCESS AND PRESENTATION

Summary

1. Data samples and M
2. The dialogic format
 - The Narrative Approach
 - From interview transcripts to Dialogue: an application of the Narrative Approach
3. Style, format and thematic breakdown of Chapters 3 – 8

NOTE TO READER:

A RECOMMENDATION ON HOW TO READ CHAPTERS 3-8

CHAPTER THREE

THE ENCOUNTER WITH FORMAL MATHEMATICAL REASONING:

CONCEPTUALISING ITS SIGNIFICANCE AND ENACTING ITS TECHNIQUES

Summary

Episodes

1. The tension between familiar (numerical, concrete) and unfamiliar (rigorous, abstract): resorting to the familiarity of number
2. The tension between general and particular:
 - Constructing examples
 - Applying the general to the particular
3. Using definitions towards the construction of mathematical arguments:
 - Weaving the use of definitions into the construction of a mathematical argument
 - Making the fine choice between algebraic manipulation and employment of a definition
4. Logic as building block of mathematical arguments: reconciling with inconclusiveness
CHAPTER FOUR
MEDIATING MATHEMATICAL MEANING
THROUGH VERBALISATION, SYMBOLISATION AND VISUALISATION

Summary
111

Episodes
0. To appear and to be:
 Conquering the ‘genre’ speech of university mathematics 112
1. Strings of Symbols and Gibberish – Symbolisation and Efficiency 120
 Desperate juggling of axioms and random mathematics 121
 To-ing and fro-ing between mathematics and language 125
2. Premature Compression:
 Why is \(\text{det}(aI_n) = a^n \text{ true?} \) 134
 Why is \(xox = xo\times^{-1} \Rightarrow x = x^{-1} \text{ true?} \) 136
3. Visualisation and the role of diagrams 139
4. Undervalued or Absent Verbalisation
 and the Integration of Words, Symbols and Diagrams 151

Special Episodes
1. The Group Table 152

Out-takes
1. Typed Up 159

CHAPTER FIVE
THE ENCOUNTER WITH THE CONCEPT OF FUNCTION

Summary
161

Episodes
1. Concept Images and Concept Definition
 Domineering presences (function-as-formula), 162
 conspicuous absences (domain / range)
 The Students’ Turbulent Relationship with the Concept Definition 166
2. Relationship with Graphs: Attraction, Repulsion, Unease and Uncertainty 168
3. The Troubling Duality at the Heart of a Concept: Function as Process, Function as Object 172

Special Episodes
1. The Tremendous Function-Lookalike That is Tanx 176
2. Polynomials and the Deceptive Familiarity of Essentially Unknown Objects 177

Out-takes
1. History Relived 179
2. Evocative Terms for 1-1 and Onto 180
3. \mathbb{R}^n: A Grotesque and Vulgar Symbol? 180

CHAPTER SIX
THE ENCOUNTER WITH THE CONCEPT OF LIMIT

Summary 181

Episodes
1. Beginning to Understand the Necessity For A Formal Definition of Convergence 182
2. Beyond the ‘Formalistic Nonsense’: Understanding the Definition of Convergence Through Its Verbalisation and Visualisation – Symbolisation As A Safer Route? 185
3. The Mechanics of Identifying and Proving A Limit In Search of N 193
 Identifying the Limit of a Sequence 194

Special Episodes
1. Ignoring the ‘Head’ of a Sequence 195

Out-takes
1. \geq or $>$ N? 199
2. Series 200
3. Continuity and Differentiability 200

CHAPTER SEVEN
UNDERGRADUATE MATHEMATICS PEDAGOGY

Summary 205

Episodes
1. Interaction / Participation Enhancing students’ mathematical expression through interactive interrogation of their thinking 206
 Building students’ understanding through ‘Socratic dialogue’ 206
 Facilitating students’ realisation of their responsibility towards their own learning 207
 Benefiting from the rich environment of a one-to-one tutorial 208
 Students’ resistance to participatory teaching 212
 Conditioning interaction effectively 212
2. Introducing, contextualising the importance of new ideas 215
3. Concept Image Construction 217
4. Abstraction/Rigor Vs Concretisation, Intuition and Exemplification
Table of Contents

Abstraction
Formalism
 a. Fostering the significance of mathematical literacy 224
 b. The fuzzy didactical contract of university mathematics 229
Numerical experiments 234
Pictures
 a. The pedagogical potential, and the strongly personal nature, 237
 of pictures
 b. Building students’ understanding of convergence 238
 through the use of visual representations
 c. Strengthening students’ understanding of injective 239
 and surjective functions using Venn diagrams
 d. Strengthening students’ understanding of functional 240
 properties through construction and examination
 of function graphs
 e. Negotiating meanings and appropriateness of pictures 241
 as a means of strengthening students’ concept images
 in Group Theory
The ‘toolbox’ perspective 247
The skill and art in trial-and-error: making appropriate / clever 248
choices when deciding the steps of a proof

Special Episodes
1. Teaching without examples 250
2. Do not Teach Indefinite Integration 251
3. Teaching of functions, process – object, polynomials 253
4. Rules of attraction 254
5. Content coverage 255

Out-takes
1. Does learning happen anyway? 255

CHAPTER EIGHT
FRAGILE, YET CRUCIAL:
THE RELATIONSHIP BETWEEN MATHEMATICIANS AND
RESEARCHERS IN MATHEMATICS EDUCATION

Summary

Episodes
1. Benefits
 Benefits from using mathematics education research 258
 Benefits from engaging with mathematics education research 260
2. Reflection and critique of the practices of RME
 – there’s something about the way you…
 Do Research (an evaluation of Qualitative Inquiry 264
 and conditions under which it could work for mathematicians)
 a. … currently
 b. … and other ways you could be doing it! 273
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorise (or: on the R C Moore diagram)</td>
<td>276</td>
</tr>
<tr>
<td>Write up</td>
<td>280</td>
</tr>
<tr>
<td>Disseminate</td>
<td>281</td>
</tr>
<tr>
<td>Special Episodes</td>
<td></td>
</tr>
<tr>
<td>1. The Reviews</td>
<td>285</td>
</tr>
<tr>
<td>EPILOGUE</td>
<td>293</td>
</tr>
<tr>
<td>POST-SCRIPT Amongst Mathematicians: Making of, Coming to be</td>
<td>297</td>
</tr>
<tr>
<td>Beginnings...</td>
<td>297</td>
</tr>
<tr>
<td>Initial proposal</td>
<td>299</td>
</tr>
<tr>
<td>Flash forward...</td>
<td>302</td>
</tr>
<tr>
<td>Back to initial planning</td>
<td>304</td>
</tr>
<tr>
<td>A modified proposal</td>
<td>304</td>
</tr>
<tr>
<td>First trials and reviews</td>
<td>308</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>311</td>
</tr>
<tr>
<td>THEMATIC INDEX: Mathematical Topics</td>
<td>333</td>
</tr>
<tr>
<td>THEMATIC INDEX: Learning and Teaching</td>
<td>335</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td>337</td>
</tr>
</tbody>
</table>
Amongst Mathematicians
Teaching and Learning Mathematics at University Level
Nardi, E.
2008, XIII, 341 p., Hardcover