Contents

1. THE REGULATION OF GENE EXPRESSION
 IN PLANTS AND ANIMALS 1
 Robert E. Farrell, Jr.

 1.1. OVERVIEW OF EUKARYOTIC TRANSCRIPTION 1
 1.1.1. Regulation of Gene Expression 1
 1.1.2. Nature of Transcription 3
 1.1.3. Transcription Factors and Promoter Elements .. 7
 1.1.4. Chromosomal Structure Influences Gene Expression . 11
 1.1.5. Extranuclear Transcriptionally Active Compartments:
 Mitochondria and Chloroplasts 12
 1.1.6. Types of Nuclear Transcripts Produced 14

 1.2. TRANSLATION OF NUCLEAR TRANSCRIPTS 16
 1.2.1. mRNA Sequence and Structure Affect Translation . 17
 1.2.2. Non-Canonical Initiation of Translation 21
 1.2.3. Role of Secondary mRNA Structure
 on Translational Control 21

 1.3. MAINSTREAM MOLECULAR TECHNIQUES
 TO STUDY RNA AS A PARAMETER OF GENE
 EXPRESSION 22
 1.3.1. Non-PCR Methods: Northern Analysis,
 Nuclease Protection, and Nuclear Runoff Assay 23
 1.3.2. PCR-Based Methods: 5’ RACE (Rapid Amplification
 of cDNA Ends) 25
 1.3.3. In Silico Tools 28
 1.3.4. In Vitro Translation and Western Analysis 30
 1.3.5. Implications for Proteomics 31

 1.4. SUMMARY ... 32
 REFERENCES ... 34
2. MULTIPLE TRANSCRIPT INITIATION AS A MECHANISM FOR REGULATING GENE EXPRESSION

Robert E. Farrell, Jr. and Carole L. Bassett

2.1. NUCLEAR GENE TRANSCRIPTION – AN OVERVIEW

2.1.1. Initiation of Transcription: Transcription Factors and Promoter Elements

2.1.2. Transcription of Cytoplasmic Genomes

2.1.3. Organellar vs Cytoplasmic mRNAs

2.2. THE ORIGINS OF MULTIPLE TRANSCRIPTS

2.2.1. Multiple Promoters

2.2.2. Transcription Start Sites in Introns

2.2.3. Multiple TATA Boxes in a Single Promoter

2.2.4. How Alternative TSSs Influence Gene Expression

2.3. BICISTRONIC mRNAs

2.3.1. Monocistronic vs. Polycistronic mRNA

2.3.2. Classical Bicistronic mRNA(s) in Plants

2.4. CONCLUSION

REFERENCES

3. ALTERNATIVE PROCESSING AS A MECHANISM FOR REGULATING GENE EXPRESSION

Eliezer S. Louzada

3.1. INTRODUCTION

3.2. REGULATION OF ALTERNATIVE SPLICING

3.2.1. Splice Site Recognition

3.2.2. Factors Affecting Canonical and Alternative Splicing

3.3. MODE OF ACTION OF ALTERNATIVE SPLICING

3.3.1. Exon Skipping

3.3.2. Intron Retention

3.3.3. Cryptic Introns

3.4. FUNCTIONAL SIGNIFICANCE OF ALTERNATIVE SPLICING

3.4.1. Nonsense-Mediated mRNA Decay

3.4.2. Control of Gene Expression

3.4.3. Alternative Splicing and Stress

3.5. CONCLUSION AND PROSPECTUS

REFERENCES
4. MESSENGER RNA 3'-END FORMATION AND THE REGULATION OF GENE EXPRESSION 101
Arthur G. Hunt

4.1. INTRODUCTION AND AN OVERVIEW OF POLYADENYLATION 101
4.2. POLYMORPHISM IN POLYADENYLATION SITES IN PLANTS 105
 4.2.1. Regulation via mRNA 3′ end Processing 105
 4.2.2. The Scope of Alternative Polyadenylation in Plants 108
4.3. REGULATION OF POLYADENYLATION IN PLANTS 110
 4.3.1. Recent Developments Regarding the Nature of Polyadenylation Signals in Plants 110
 4.3.2. Polyadenylation Signals and Alternative 3′ end Processing 112
 4.3.3. Involvement of Proteins Apart from Polyadenylation Factor Subunits in 3′ end Processing 114
 4.3.4. Linking Polyadenylation to Environmental and Developmental Cues 115
REFERENCES 117

5. AN OVERVIEW OF SMALL RNAs 123
Jean-Michel Hily and Zongrang Liu

5.1. SMALL RNAs: TARGETS AND MECHANISMS 123
 5.1.1. Distinguishing Between the Small RNAs: siRNA, miRNA, and Other Small RNAs 124
 5.1.2. Two Distinct Stages of RNAi: Initiator and Effector Phases 126
 5.1.3. Operational Modes and Functions 129
 5.1.4. Amplification of the Silencing Triggers 133
 5.1.5. A Natural Defense Mechanism 133
5.2. USING RNAi TECHNOLOGY AS A MOLECULAR TOOL 134
 5.2.1. Methods of Induction of Gene Silencing 135
 5.2.2. Functional Genomic Tools to Understand Essential Regulation of Key Developmental Processes 136
 5.2.3. Improvement of Plant Characteristics 137
5.3. CONCLUSION 139
REFERENCES 141
6. CONTROL OF GENE EXPRESSION BY mRNA TRANSPORT AND TURNOVER 148
 Carole L. Bassett

 6.1. INTRODUCTION ... 148
 6.2. mRNA TRANSPORT AND LOCALIZATION 148
 6.2.1. mRNA Transport 149
 6.2.2. mRNA Localization 152
 6.2.3. RNA Granules 153
 6.2.4. Nuclear Compartments 159
 6.3. mRNA BINDING FACTORS 161
 6.3.1. mRNPs .. 161
 6.4. mRNA TURNOVER 167
 6.4.1. General mRNA Decay 168
 6.4.2. mRNA Surveillance 169
 6.5. SUMMARY AND PROSPECTUS 174

REFERENCES .. 175

SUBJECT INDEX .. 189
Regulation of Gene Expression in Plants
The Role of Transcript Structure and Processing
Bassett, C.L. (Ed.)
2007, XVI, 196 p., Hardcover
ISBN: 978-0-387-35449-1