Contents

Preface .. vii
Acknowledgments .. xi
About the Author .. xviii

Chapter 1: Atherosclerosis I .. 1
1. Introduction .. 1
2. Geographic Variations 3
3. Natural History .. 4
4. Other Findings .. 5
5. The Pathogenesis of Atherosclerosis 6
 5.1. The Fatty Streak 7
 5.2. The Response-to-Injury Hypothesis of Atherosclerosis 7
 5.3. Cellular Interactions in Atherosclerosis 8
 5.4. When Does Atherosclerosis Begin 10
6. Risk Factors .. 11
 6.1. High Serum Cholesterol and Low-Density Lipoprotein as a Risk Factor for CHD 11
 6.2. Blood Pressure as a Major Cardiovascular Risk Factor 12
 6.3. Cigarette Smoke Constituents and SMC Proliferation 13
 6.4. Diabetes and Atherosclerosis 13
 6.5. Obesity and Atherosclerosis 14
 6.6. Effect of β-Blockade in Atherosclerosis 14
7. New Concepts .. 15
 7.1. Parameters We Cannot Measure 15
 7.2. Seeing Is Believing 16
 7.3. Hemodynamics 16
 7.4. Which Cell ... 17
 7.5. Plaque Rupture, Atherosclerosis, Aneurysm 18

References ... 18

xiii
Chapter 2: Atherosclerosis II

1. Anatomical Distribution of Atherosclerosis
 1.1. Atherosclerosis and Functions of the Artery
 1.2. Stress-Concentration at the Arterial Branch Origins

2. Atherosclerosis and Stress-Concentration
 2.1. Ostial Lesions and Stress-Concentration
 2.2. Aortic Arch Lesions and Stress/Strain Concentration
 2.3. Aortic Bifurcation Lesions and Stress
 2.4. Carotid Bifurcation Lesions and Stress
 2.5. The Descending Thoracic Aorta Lesions and Flexion Stress
 2.6. Effect of Blood Pressure and Lesions in the Lower Extremities

3. Atherosclerosis in the Aortic Valve and Stress
 3.1. Methodology
 3.2. Findings
 3.3. Stress Determination
 3.4. Correlation with Stress

4. How Stress and Stretch Might Influence Atherosclerosis

5. Existing Concepts of Pathogenesis of Atherosclerosis
 5.1. Response-to-Injury Hypothesis

6. A New Hypothesis for Pathogenesis of Atherosclerosis: Smooth Muscle Cell Injury Hypothesis
 6.1. Essential Features
 6.2. Cellular Mechanism of Atherosclerosis

7. Pathogenesis of Atherosclerosis and Aneurysm
 7.1. Proposed Pathogenesis of Atherosclerosis and Aneurysm
 7.2. Examples

References

Chapter 3: Structure and Mechanics of the Artery

Michel R. Labrosse

1. Introduction
2. Composition of Arteries
3. Different Types of Arteries
4. Structure of Arteries
5. Macro- and Microstructural Changes Associated with Arterial Branches and Bifurcations
6. Function of Arteries
 6.1. Baroreceptors
 6.2. Effect of Posture
 6.3. Adaptation to Pressure and Flow
7. Anchoring of Arteries, Residual Stress, and Smooth Muscle Activity
8. Changes Along the Arterial Tree
9. Aging
10. In Vivo Evaluation of the Mechanical Response of Arteries

References
11. In Vitro Evaluation of the Mechanical Response of Arteries 63
 11.1. Uniaxial Tests .. 63
 11.2. Biaxial Tests ... 64
 11.3. Pressurization Tests 64
12. Mechanical Model ... 65
13. Determination of the Material Constants Associated with a Model ... 68
14. Finite Element Modeling of Arteries 69
15. Preliminary Study of Porcine Ascending Thoracic and Abdominal Aortas ... 71
16. Conclusion .. 76
References ... 76
Appendix ... 78

Chapter 4: Pressure Vessel Principles 82
1. Equilibrium in the Artery Under Internal Pressure 83
 1.1. Determination of Wall Stress in the Artery:
 The Basic Approach ... 83
 1.2. Wall Stress in Different-Size Arteries 85
 1.3. Magnitude of Wall Stress 86
 1.4. Wall Stress in the Aortic Arch and Tortuous Arteries 86
 1.5. Stress Distribution from Inside to Outside of the Artery Wall ... 87
2. Other Factors Affecting Wall Stress in the Artery 89
 2.1. Tethering ... 89
 2.2. Active versus Passive Conditions of the Artery 90
 2.3. Residual Stress in the Circumferential Direction of the Artery ... 92
3. Circular Hole in a Plate Under Tension 93
 3.1. Stress-Concentration Around a Circular Hole in a Plate Under Tension .. 94
 3.2. Lüder Lines ... 95
4. Stress-Concentration: Why Does It Occur? 96
 4.1. Hole in a Plate .. 97
 4.2. Geometric Discontinuity Stresses 98
 4.3. Material Discontinuity Stresses or Stresses in a Bimetallic Joint: Stresses When the Material Changes While the Geometry Remains the Same ... 99
5. Hole in a Cylinder Under Internal Pressure 99
 5.1. Elliptical Opening in a Plate 101
 5.2. Elliptical Opening in a Cylinder 102
6. Techniques for Determination of Stress-Concentration 104
 6.1. Strain Measurement .. 104
 6.2. Photoelastic Method .. 104
 6.3. Moiré Method ... 105
References ... 106
Chapter 5: Pressure Vessel Intersections 107
1. Stress-Concentration at “T”-Branch Pipe Connection:
 The Area Method .. 108
 1.1. Sample Calculation Using Area Method: An Example 111
2. Stress-Concentration of a Nozzle in a Spherical Vessel 112
 2.1. Area Method ... 112
 2.2. Example ... 113
 2.3. Influence Length ... 114
 2.4. Effect of Bending (Stress-Concentration Correction Factor K_b) ... 115
 2.5. Comparison with Shell Theory 115
3. An Elastic Shell Analysis of Stress-Concentration of a Pressurized
 “T”-Branch Pipe Connection ... 116
 3.1. Structural Analysis of “T”-Branch Shell Intersection 118
4. Photoelastic Study of Stresses Around Reinforced Outlets in
 Pressure Vessels .. 119
 4.1. Photoelastic Method ... 119
5. Nonradial Branch (Branch at an Angle) 122
6. Reinforcement Around the Branch 124
7. Fatigue at the Location of Stress-Concentration 126
8. Effect of Size of the Artery and Size of the Branch on
 Stress-Concentration .. 126
 8.1. The Effect of Size of the Artery 127
 8.2. The Effect of Size of the Branch (Hole) 128
 8.3. Analytical Approach .. 128
9. Arterial Bifurcation ... 131
 9.1. Discontinuity Stresses (Area Method) 132
 9.2. Elliptical Cross Section at the Bifurcation 133
 9.3. Bending in the Elliptical Cross Section 133
 9.4. Stress Increase Due to Thickness Change 134
10. Curved Arteries .. 135
References .. 138

Chapter 6: Stress-Concentration in the Artery I 139
1. Introduction ... 139
2. Stress-Concentration in the Bovine Coronary Arterial Branch 140
 2.1. The Experiments .. 140
 2.2. The Model .. 144
 2.3. The Observations .. 145
3. Stress-Concentration in the Human Carotid Artery Bifurcation 148
 3.1. The Geometry ... 149
 3.2. The Analysis ... 151
4. Role of Residual Stress in Stress-Concentration at the Human
 Carotid Artery Bifurcation .. 154
 4.1. Residual Strain ... 154
 4.2. The Analytical Model .. 155
 4.3. The Model Results ... 157
Chapter 7: **Stress-Concentration in the Artery II**

1. Introduction .. 166
2. Shape Change at the Apex of Human Cerebral Artery Bifurcation
 Under Pressure .. 167
 2.1. Study of the Apex of Cerebral Artery Bifurcation 167
 2.2. Stress Considerations .. 170
3. Stress-Concentration at the Arterial Branch in Vivo 171
 3.1. In Vivo Experiments ... 171
 3.2. In Vitro Experiments ... 172
 3.3. Geometry of the Branch .. 173
 3.4. Theoretical Considerations .. 174
 3.5. The Finite Element Model .. 176
 3.6. Parametric Studies ... 177
 3.7. Analytical Results .. 177
 3.8. Comments ... 182
4. Determination of Absolute Values of Stress and
 Stress-Concentration at the Arterial Branch 182
 4.1. Introduction ... 182
 4.2. Steps Used in the Analysis ... 183
 4.3. Experimental Method .. 183
 4.4. Isotropic Nonlinear Material Properties 186
 4.5. Multiple Geometric Models .. 186
 4.6. Changing the Modulus of Elasticity 186
 4.7. Analytical Results .. 188
5. Stresses in the Human Aortic Arch: Analysis Using Nonlinear,
 Hyperelastic, and Isotropic Properties 192
 5.1. Introduction ... 192
 5.2. Strains in the Human Aortic Arch 193
 5.3. Determination of Stresses in the Human Aortic Arch 196
 5.4. Results: Finite Element Model Solution 204
 5.5. Verification of the Finite Element Model:
 Strain Comparison ... 210
 5.6. Conclusions and Comments .. 211
6. Circumferential Stress in the Artery: Comparing Different Studies . 211

Chapter 8: **Endothelial Cells and Low-Density Lipoproteins**

at the Branch .. 214
1. Introduction .. 215
2. Endothelial Cell Morphology at the Branch and
 Nonbranch Regions .. 216
5.5. Effect of Tapering of the Aorta ... 273
5.6. Location of the Labeled SMCs ... 273
5.7. Aorta and Balloon Diameter ... 274
5.8. Balloon Injury and Cell Proliferation 274
5.9. Effect of Tapering of the Aorta ... 274

6. Quantitative Relationship Between SMC Proliferation and
Aortic Stretch ... 275

References .. 279

Chapter 10: Stress Reduction and Atherosclerosis Reduction 281
1. Introduction ... 282
2. Inhibition of Atherosclerosis by Reduction of Arterial Wall Stress... 282
 2.1. Reduction of Arterial Wall Stress 282
 2.2. Rabbit Model for Atherosclerosis 283
 2.3. Atherosclerosis in Control and Stress-reduced Areas 285
3. Rhythmic Pattern of Atherosclerosis in Vertebral Arteries 288
4. Freedom from Atherosclerosis in Intramyocardial
 Coronary Arteries .. 290
 4.1. The Anatomy .. 290
 4.2. Clinical Investigation .. 292
 4.3. Studies in Canine Hearts .. 292
 4.4. Wall Stress and Coronary Atherosclerosis 295
5. Change in Endothelial Cell Morphology by Reduction of
 Arterial Wall Stress ... 296
6. Cumulative Arterial Injury Hypothesis for Atherosclerosis 298
 6.1. Wall Stress and Atherosclerosis 299
 6.2. Cumulative Arterial Injury (Artery Fatigue) and
 Atherosclerosis ... 300
 6.3. Endothelial Injury and Atherosclerosis 303
 6.4. Medical Injury and Atherosclerosis 303
 6.5. Comprehensive Mechanism for Atherosclerosis 303
7. Comparing Fatigue Damage Between Nonbiological (Metallic)
 and Biological Pressure Vessels .. 304
 7.1. Common Cause of Atherosclerosis and Aneurysm 304
 7.2. Stress-Concentration and Fatigue 305
8. Reduction of Coronary Atherosclerosis by Reduction of Heart
 Rate in Cynomolgus Monkeys .. 307
9. Reduction of Atherosclerosis by Treatment with Beta-Blocker
 in Cynomolgus Monkeys .. 308
10. Reduction of Endothelial Cell Injury by Treatment with
 Beta-Blocker in Cynomolgus Monkeys 308
11. Reduction of Arterial Permeability to LDL by Treatment with
 Beta-Blocker in Rabbits ... 313
 11.1. LDL Preparation ... 313
 11.2. Aorta Preparation and the Experiment 313
 11.3. Tissue Samples, Cryosectioning, and Counting 314
Chapter 11: The Vein Graft

1. Introduction
 1.1. Veins from the Lower Leg
 1.2. Shape of the Vein versus Vein Graft
 1.3. Vein Valves
 1.4. Reversed, Nonreversed, and in Situ Grafts

2. Vein Graft Atherosclerosis in Coronary Artery Positions

3. Etiology of Lesions in the Vein Grafts

4. Vein Grafts in Femoro-Popliteal Positions
 4.1. Additional Comments

5. Vein Valves and Graft Stenosis
 5.1. The Animal Model
 5.2. The “Horseshoe” Graft in Patients

6. Vein Valve Motion and Pressure Trap in Vein Grafts
 6.1. The Fate of the Vein Valve in the Graft
 6.2. Flow Augmentation by the Vein Valve in the Graft
 6.3. Valve Motion and Pressure Trap
 6.4. Pressure Trap in Patients

7. Valve Motion in Coronary Artery Bypass Graft: Correlation with Flow Waveform
 7.1. Valve Dynamics in the Femoro-Popliteal Position

8. Mechanics of Distension of Veins

9. Adaptation of the Vein in the Arterial Position
 9.1. Jugular Vein in Carotid Position in Rabbits
 9.2. Adaptation of Vein Under Various Pressure and Flow Conditions
 9.3. Intimal and Medial Changes in Vein Grafts in Response to Pressure and Flow

10. Adaptation of Vein Grafts Under External Support
 10.1. Perivenous Mesh
 10.2. A New Outside Stent
 10.3. Biodegradation of External Support to Optimize Arterialization of Vein Grafts

References

Chapter 12: Anastomosis

1. Introduction

2. Increased Compliance Near Artery-to-Artery, End-to-End, Anastomosis
Chapter 13: Anastomotic Aneurysms and Anastomotic Intimal Hyperplasia

1. Introduction .. 380
2. Anastomotic Aneurysms .. 381
 2.1. Clinical Findings ... 383
 2.2. Pathogenesis ... 384
3. Mechanical Stress at Prosthesis-to-Artery, End-to-Side Anastomosis 386
4. Anastomotic Intimal Hyperplasia 388
 4.1. Vein-to-Artery, End-to-Side Anastomosis 388
 4.2. Effect of Graft Compliance Mismatch on Arterial Intimal Hyperplasia at the Anastomosis 392
 4.3. Suture Line Stresses at the Anastomosis: Effect of Compliance Mismatch 396
 4.4. A Take-Home Message ... 402
References .. 402

Chapter 14: Intracranial Aneurysms ... 403
1. Introduction .. 403
2. The Anatomy .. 404
3. Incidence ... 405
4. Pathology .. 407
 4.1. Aneurysms ... 407
 4.2. Atherosclerosis .. 411
 4.3. Association Between Aneurysm and Atherosclerosis 413
5. Mechanism of Aneurysm Formation 414
 5.1. Pathogenesis of Aneurysms 416
 5.2. Mechanisms of Growth and Rupture 418
 5.3. Aneurysm Wall Histology 419
6. Elasticity of the Aneurysm .. 419
7. Mechanical Forces in Aneurysm Formation 421
 7.1. Fluid Dynamics–related Forces 421
 7.2. Solid Mechanics–related Forces 423
References .. 424

Chapter 15: Aortic Aneurysms ... 426
1. Introduction .. 427
2. Incidence of AAA ... 427
3. Association Between Aneurysm Size and Rupture 429
4. Pathogenesis of Aortic Aneurysm 431