Contents

Dedication v
List of Figures xi
Foreword xix
Preface xxiii
Acknowledgments xxv

Part I Fundamentals of Plasmonics

Introduction 3

1. ELECTROMAGNETICS OF METALS 5
 1.1. Maxwell’s Equations and Electromagnetic Wave Propagation 5
 1.2. The Dielectric Function of the Free Electron Gas 11
 1.3. The Dispersion of the Free Electron Gas and Volume Plasmons 15
 1.4. Real Metals and Interband Transitions 17
 1.5. The Energy of the Electromagnetic Field in Metals 18

2. SURFACE PLASMON POLARITONS AT METAL / INSULATOR INTERFACES 21
 2.1. The Wave Equation 21
 2.2. Surface Plasmon Polaritons at a Single Interface 25
 2.3. Multilayer Systems 30
 2.4. Energy Confinement and the Effective Mode Length 34

3. EXCITATION OF SURFACE PLASMON POLARITONS AT PLANAR INTERFACES 39
 3.1. Excitation upon Charged Particle Impact 39
3.2. Prism Coupling 42
3.3. Grating Coupling 44
3.4. Excitation Using Highly Focused Optical Beams 47
3.5. Near-Field Excitation 48
3.6. Coupling Schemes Suitable for Integration with Conventional Photonic Elements 50

4. IMAGING SURFACE PLASMON POLARITON PROPAGATION 53
 4.1. Near-Field Microscopy 53
 4.2. Fluorescence Imaging 57
 4.3. Leakage Radiation 59
 4.4. Scattered Light Imaging 62

5. LOCALIZED SURFACE PLASMONS 65
 5.1. Normal Modes of Sub-Wavelength Metal Particles 66
 5.2. Mie Theory 72
 5.3. Beyond the Quasi-Static Approximation and Plasmon Lifetime 73
 5.4. Real Particles: Observations of Particle Plasmons 77
 5.5. Coupling Between Localized Plasmons 80
 5.6. Void Plasmons and Metallic Nanoshells 85
 5.7. Localized Plasmons and Gain Media 87

6. ELECTROMAGNETIC SURFACE MODES AT LOW FREQUENCIES 89
 6.1. Surface Plasmon Polaritons at THz Frequencies 90
 6.2. Designer Surface Plasmon Polaritons on Corrugated Surfaces 93
 6.3. Surface Phonon Polaritons 101

Part II Applications

Introduction 107

7. PLASMON WAVEGUIDES 109
 7.1. Planar Elements for Surface Plasmon Polariton Propagation 110
 7.2. Surface Plasmon Polariton Band Gap Structures 114
 7.3. Surface Plasmon Polariton Propagation Along Metal Stripes 116
 7.4. Metal Nanowires and Conical Tapers for High-Confinement Guiding and Focusing 124
 7.5. Localized Modes in Gaps and Grooves 129
Contents

7.6. Metal Nanoparticle Waveguides 131
7.7. Overcoming Losses Using Gain Media 138

8. TRANSMISSION OF RADIATION THROUGH APERTURES
AND FILMS 141
8.1. Theory of Diffraction by Sub-Wavelength Apertures 141
8.2. Extraordinary Transmission Through Sub-Wavelength Apertures 144
8.3. Directional Emission Via Exit Surface Patterning 150
8.4. Localized Surface Plasmons and Light Transmission Through Single Apertures 153
8.5. Emerging Applications of Extraordinary Transmission 157
8.6. Transmission of Light Through a Film Without Apertures 157

9. ENHANCEMENT OF EMISSIVE PROCESSES AND NONLINEARITIES 159
9.1. SERS Fundamentals 159
9.2. SERS in the Picture of Cavity Field Enhancement 163
9.3. SERS Geometries 165
9.4. Enhancement of Fluorescence 170
9.5. Luminescence of Metal Nanostructures 173
9.6. Enhancement of Nonlinear Processes 175

10. SPECTROSCOPY AND SENSING 177
10.1. Single-Particle Spectroscopy 178
10.2. Surface-Plasmon-Polariton-Based Sensors 188

11. METAMATERIALS AND IMAGING WITH SURFACE PLASMON POLARITONS 193
11.1. Metamaterials and Negative Index at Optical Frequencies 194
11.2. The Perfect Lens, Imaging and Lithography 198

12. CONCLUDING REMARKS 201

References 203
Index 221