With dramatic increases in on-chip packing densities, routing congestion has become a major problem in integrated circuit design, impacting convergence, performance, and yield, and complicating the synthesis of critical interconnects. The problem is especially acute as interconnects are becoming the performance bottleneck in modern integrated circuits. Even with more than 30% of white space, some of the design blocks in modern microprocessor and ASIC designs cannot be routed successfully. Moreover, this problem is likely to worsen considerably in the coming years due to design size and technology scaling.

There is an inherent tradeoff between choosing a minimum delay path for interconnect nets, and the need to detour the routes to avoid “traffic jams”; congestion management involves intelligent allocation of the available interconnect resources, up-front planning of the wire routes for even distributions, and transformations that make the physical synthesis flow congestion-aware. The book explores this tradeoff that lies at the heart of all congestion management, in seeking to address the key question: how does one optimize the traditional design goals such as the delay or the area of a circuit, while still ensuring that the circuit remains routable? It begins by motivating the congestion problem, explaining why this problem is important and how it will trend. It then progresses with comprehensive discussions of the techniques available for estimating and optimizing congestion at various stages in the design flow.

This text is aimed at the graduate level student or engineer interested in understanding the root causes of routing congestion, the techniques available for alleviating its impact, and a critical analysis of the effectiveness of these techniques. The scope of the work includes metrics and optimization techniques for congestion at various stages of the VLSI design flow, including the architectural level, the logic synthesis and technology mapping level, the placement phase, and the routing step. This broad coverage is accompanied by a critical discussion of the pros and cons of the different ways in which one...
can minimize the ill-effects of congestion. At the same time, the book attempts to highlight further research directions in this area that appear promising.

Although this book is not meant to be an introductory text to VLSI CAD, we have tried to make it self-contained by providing brief primers that go over the classical techniques in routing, placement, technology mapping and logic synthesis, before diving into discussions on how these techniques may be modified to mitigate congestion. Our coverage focuses on congestion issues dealing primarily with standard cell based designs. In particular, the models and optimization methods that pertain specifically to field-programmable gate arrays (FPGAs) have not been explicitly addressed in this book.

Acknowledgments

It is said that no man is an island; similarly, no book is an island either. There are numerous people who have indirectly influenced this text. These include our mentors and colleagues over the years, as well as the many outstanding researchers who have left their mark on the field of VLSI CAD in general and physical synthesis in particular, and we owe a great debt to all of them.

The first two authors would like to acknowledge the encouragement provided by their management for this book project. In particular, Prashant would like to thank Pei-Hsin Ho and Robert Damiano at the Advanced Technology Group in Synopsys, Inc., whereas Rupesh is grateful to Prashant Sawkar at the Enterprise Platform Group in Intel Corporation.

Prashant would like to thank his co-authors for successful collaborations not only on this book but also on several research projects. He is also obliged to Timothy Kam for inviting him to work with Rupesh on congestion, and to Xinning Wang for many valuable discussions. Much of his effort on this book was carried out during a five week “vacation” in India; he is grateful to his parents and in-laws for uncomplainingly sacrificing the time that they had expected to spend with him, when they instead found him focusing on this book. Their unflagging encouragement, along with the quest for learning instilled in Prashant by his parents and his doctoral advisor C. L. Liu, were instrumental in giving him the confidence to take up this book project. He could not have completed this project without the continual love and support of his wife Priti, who kept him well motivated (and well fed) in spite of the many lonely hours that he spent on the manuscript rather than with her.

Rupesh is grateful to the Strategic CAD Labs at Intel for offering him the opportunity to explore the area of congestion-aware logic synthesis and thus get acquainted with the routing congestion problem during summer internships in 2002 and 2003. He would particularly like to thank Xinning Wang, Timothy Kam, Steve Burns, Priyadarsan Patra, Michael Kishinevsky, and Brian Moore whose questions during these internships motivated the work leading to publications on technology mapping targeting routing congestion. He is also grateful to his co-authors: to Prashant, as this book is the result of
a collaboration with him since 2002, and to Sachin, his doctoral advisor, for allowing him to continue to work on congestion-aware technology mapping at the University of Minnesota, Minneapolis. He would like to thank his family members in India, namely, his mother Keshar and siblings Sandhya and Tushar, who were quite supportive and encouraging during the course of the work on this book, which went on during evenings and weekends for more than a year.

Sachin would like to express thanks to his co-authors to appreciate the pleasure of working with them on this book.

Finally, the authors are grateful for the fantastic editorial support (and timely gentle prodding) provided by the staff at Springer Verlag. In particular, this book could not have been completed without the active involvement of Carl Harris and Katelyn Stanne.

Portland, OR
Hillsboro, OR
Minneapolis, MN

Prashant Saxena
Rupesh S. Shelar
Sachin S. Sapatnekar

November 2006
Routing Congestion in VLSI Circuits
Estimation and Optimization
Saxena, P.; Shelar, R.S.; Sapatnekar, S.
2007, XIV, 250 p., Hardcover