Contents

1 Introduction ... 1
 1.1 Aim and Scope of the Book 1
 1.2 Brief Overview ... 2
 1.3 Acronyms and Nomenclatures 4

2 Concepts and Applications of Stochastic Ageing 7
 2.1 Introduction ... 7
 2.2 Characterizations of Lifetime Distributions 9
 2.2.1 Shape of a Failure Rate Function 11
 2.3 Ageing Distributions 15
 2.3.1 Exponential ... 16
 2.3.2 Gamma ... 16
 2.3.3 Truncated Normal 17
 2.3.4 Weibull ... 18
 2.3.5 Lognormal .. 19
 2.3.6 Birnbaum-Saunders 20
 2.3.7 Inverse Gaussian 21
 2.3.8 Gompertz ... 22
 2.3.9 Makeham ... 22
 2.3.10 Linear Failure Rate 23
 2.3.11 Lomax Distribution 23
 2.3.12 Log-logistic .. 24
 2.3.13 Burr XII ... 25
 2.3.14 Exponential-geometric (EG) and Generalization 26
 2.4 Basic Concepts for Univariate Reliability Classes 27
 2.4.1 Some Acronyms and Notions of Aging 27
 2.4.2 Definitions of Reliability Classes 28
 2.4.3 Interrelationships 29
 2.5 Properties of the Basic Ageing Classes 31
 2.5.1 Properties of IFR and DFR 32
 2.5.2 Properties of IFRA 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.3</td>
<td>NBU and NBUE</td>
<td>34</td>
</tr>
<tr>
<td>2.5.4</td>
<td>DMRL and IMRL</td>
<td>38</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Summary of Preservation Properties of Classes of Distributions</td>
<td>38</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Moments Inequalities</td>
<td>39</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Scaled TTT Transform and Characterizations of Ageing Classes</td>
<td>42</td>
</tr>
<tr>
<td>2.6</td>
<td>Non-monotonic Failure Rates and Non-monotonic Mean Residual Lives</td>
<td>44</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Non-monotonic Failure Rates</td>
<td>44</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Non-monotonic Mean Residual Lives</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Some Further Classes of Ageing</td>
<td>45</td>
</tr>
<tr>
<td>2.8</td>
<td>Failure Rates of Mixtures of Distributions</td>
<td>47</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Mixture of Two DFR Distributions</td>
<td>48</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Possible Shapes of $r(t)$ When Two Subpopulations Are IFR</td>
<td>48</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Mixture of Two Gamma Densities with a Common Scale Parameter</td>
<td>49</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Mixture of Two Weibull Distributions</td>
<td>50</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Mixtures of Two Positively Truncated Normal Distributions</td>
<td>52</td>
</tr>
<tr>
<td>2.8.6</td>
<td>Mixtures of Two Increasing Linear Failure Rate Distributions</td>
<td>53</td>
</tr>
<tr>
<td>2.8.7</td>
<td>Mixtures of an IFR Distribution with an Exponential Distribution</td>
<td>55</td>
</tr>
<tr>
<td>2.8.8</td>
<td>Failure Rate of Finite Mixture of Several Components Belonging to the Same Family</td>
<td>56</td>
</tr>
<tr>
<td>2.8.9</td>
<td>Initial and Final Behavior of Failure Rates of Mixtures</td>
<td>57</td>
</tr>
<tr>
<td>2.8.10</td>
<td>Continuous Mixtures of Distributions</td>
<td>59</td>
</tr>
<tr>
<td>2.9</td>
<td>Partial Orderings and Generalized Partial Orderings</td>
<td>60</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Generalized Partial Orderings</td>
<td>61</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Connections Among the Partial Orderings</td>
<td>64</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Generalized Ageing Properties Classification</td>
<td>64</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Applications of Partial Orderings</td>
<td>66</td>
</tr>
<tr>
<td>2.10</td>
<td>Relative Ageing</td>
<td>67</td>
</tr>
<tr>
<td>2.11</td>
<td>Shapes of η Function for s-order Equilibrium Distributions</td>
<td>68</td>
</tr>
<tr>
<td>2.12</td>
<td>Concluding Remarks on Ageing</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Bathtub Shaped Failure Rate Life Distributions</td>
<td>71</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>Bathtub Shaped Failure Rate Is Not a Myth</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Definitions and Basic Properties</td>
<td>72</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Acronyms for Bathtub Shaped Failure Rate Life Distributions</td>
<td>73</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Definitions</td>
<td>74</td>
</tr>
</tbody>
</table>
3.3.3 Some Further Properties .. 76

3.4 Families of Bathtub Shapes Failure Rate Distributions 77
3.4.1 Bathtub Distributions with Explicit Failure Rate Functions .. 77
3.4.2 Finite Range Distribution Families 82
3.4.3 Bathtub Distributions with More Complicated Failure Rates .. 84
3.4.4 A Mistaken Identity: the Mixed Weibull Family 86
3.4.5 Some Comments on the Bathtub Shapes 87
3.5 Construction Techniques for BT Distributions 87
3.5.1 Glaser’s Technique 88
3.5.2 Convex Function 88
3.5.3 Function of Random Variables 88
3.5.4 Reliability and Stochastic Mechanisms 88
3.5.5 Mixtures .. 89
3.5.6 Sectional Models 89
3.5.7 Polynomial of Finite Order 90
3.5.8 TTT Transform 90
3.5.9 Truncation of DFR Distribution 90
3.6 Change Point Estimation for BT Distributions 91
3.7 Mean Residual Life and Bathtub Shaped Life Distributions ... 92
3.7.1 Mean Residual Life 92
3.7.2 Bathtub Shaped Failure Rate and Decreasing Percentile Residual Life Function 93
3.7.3 Relationships Among NWBUE, BT and IDMRL Classes 93
3.8 Optimal Burn-in Time for Bathtub Distributions 94
3.8.1 Concepts of Burn-in 94
3.8.2 Burn-in and Bathtub Distributions 95
3.8.3 Burn-in Time for BT Lifetime under Warranty Policies 98
3.8.4 Optimal Replacement Time and Bathtub Shaped Failure Rate Distributions 99
3.9 Upside-down Bathtub Shaped Failure Rate Distributions ... 99
3.9.1 UBT Models ... 100
3.9.2 Optimal Burn-in Decision for UBT Models 102
3.10 Modified and Generalized Distributions 102
3.10.1 Modified Bathtub Distributions 102
3.10.2 Generalized Bathtub Curves 104
3.10.3 Roller-Coaster Curves 105
3.11 Applications .. 106

4 Mean Residual Life – Concepts and Applications in Reliability Analysis 109
4.1 Introduction .. 109
4.2 Mean Residual Life and Other Ageing Properties 110
4.2.1 Mean Residual Life and its Reciprocity with Failure Rate .. 111
4.3 Mean Residual Lives of Some Well-known Lifetime Distributions 112
4.4 Mean Residual Life Classes .. 114
 4.4.1 Monotonic MRL Classes .. 114
 4.4.2 Non-monotonic MRL Classes 115
4.5 Non-monotonic MRL and Non-monotonic Failure Rate 116
 4.5.1 Non-monotonic Failure Rates Life Distribution 117
 4.5.2 Relations Between MRL and Failure Rate in Terms of Shapes and Locations of Their Change Points 117
 4.5.3 A General Approach Determining Shapes of Failure Rates and MRL Functions 124
 4.5.4 Roller-Coaster Failure Rates and Mean Residual Lives . 126
4.6 Effect of Burn-In on Mean Residual Life 128
 4.6.1 Optimal Burn-in Criteria 130
 4.6.2 Optimal Burn-in for Upside-down Bathtub Distributions 130
4.7 Tests and Estimation of Mean Residual Life 130
 4.7.1 Tests for Monotonic Mean Residual Life 131
 4.7.2 Tests of Trend Change in Mean Residual Life 131
 4.7.3 Estimation of Monotonic Mean Residual Life 131
 4.7.4 Estimation of Change Points 132
4.8 Mean Residual life with Special Characteristics 132
 4.8.1 Linear Mean Residual Life Function 132
 4.8.2 Proportional MRL and its Generalization 133
4.9 Other Residual Life Functions 133
 4.9.1 Residual Life Distribution Function 133
 4.9.2 Variance Residual Life Function 134
 4.9.3 Percentile Residual Life Function 134
4.10 Mean Residual Life Orderings 134
4.11 Multivariate Mean Residual Life 135
 4.11.1 Characterizations of Multivariate Survival Distributions Based on Mean Residual Lives 136
 4.11.2 Bivariate Decreasing MRL 137
4.12 Applications and Conclusions 137

5 Weibull Related Distributions .. 139
5.1 Introduction .. 139
5.2 Basic Weibull Distribution 140
 5.2.1 Two-parameter Weibull Distribution and Basic Properties .. 140
 5.2.2 Parameter Estimation Methods 142
 5.2.3 Relative Ageing of Two 2-Parameter Weibull Distributions .. 144
5.3 Three-parameter Weibull distribution 144
5.4 Models Derived from Transformations of Weibull Variable . 148
5.4.1 Reflected Weibull Distribution 148
5.4.2 Log Weibull Distribution 149
5.4.3 Inverse (or Reverse) Weibull Model 149
5.5 Modifications or Generalizations of Weibull Distribution 150
5.5.1 Extended Weibull Distribution 151
5.5.2 Exponentiated Weibull Distribution 152
5.5.3 Modified Weibull Distribution 154
5.5.4 Modified Weibull Extension 155
5.5.5 Generalized Weibull Family 156
5.5.6 Generalized Weibull Distribution of Gurvich et al. ... 158
5.6 Models Involving Two or More Weibull Distributions 158
5.6.1 \(n\)-fold Mixture Model 158
5.6.2 \(n\)-fold Competing Risk Model 159
5.6.3 \(n\)-fold Multiplicative Model 160
5.6.4 \(n\)-fold Sectional Model 161
5.6.5 Model Involving Two Inverse Weibull Distributions ... 161
5.7 Weibull Models with Varying Parameters 162
5.8 Discrete Weibull Models 163
5.9 Bivariate models 163
5.9.1 Marshall and Olkin (1967) 164
5.9.2 Lee (1979) 164
5.9.3 Lu and Bhattacharyya (1990)-I 164
5.9.4 Morgenstern-Gumbel-Farlie System 165
5.9.5 Lu and Bhattacharyya (1990)-II 165
5.9.6 Lee (1979)-II 165
5.10 Applications of Weibull and Related Models 165
6 An Introduction to Discrete Failure Time Models 167
6.1 Introduction 167
6.2 Survival Function, Failure Rate and Other Reliability
Characteristics 168
6.3 Elementary Ageing Classes 171
6.3.1 IFR and DFR 171
6.3.2 IFRA and DFRA 174
6.3.3 NBU (NWU) 175
6.3.4 NBUE 175
6.3.5 DMRL and IMRL 176
6.3.6 Relationships Among Discrete Ageing Concepts 178
6.4 More Advanced Ageing Classes 178
6.5 Non-monotonic Models 179
6.5.1 BT Failure Rate and DIMRL 180
6.5.2 UBT Failure Rate and DIMRL 183
6.5.3 Discrete IDMRL (DIMRL) and BT (UBT) Failure Rate 184
6.5.4 Discrete Bathtub-shaped Failure Rate Average 186
6.6 Preservation under Poisson Shocks 187
6.7 Examples of Discrete Time Failure Models 187
 6.7.1 Common Discrete Lifetime Distributions Derived from Continuous Ones 188
 6.7.2 Distributions Derived from Simple Failure Rate Functions 191
 6.7.3 Determination of Ageing from Ratio of Two Consecutive Probabilities 192
 6.7.4 Polya Urn Distributions 194

6.8 Discussion on Discrete Failure Time Models 195

6.9 Applications of Discrete Failure Time Models 196

6.10 Some Problems of Usual Definition of Discrete Failure Rate 198

6.11 Alternative Definition of Failure Rate and Its Ramification 199
 6.11.1 The Relationships between $r(k)$ and $r^*(k)$... 200
 6.11.2 Effect of Alternative Failure Rate on Ageing Concepts 200
 6.11.3 Additive Property for Series System .. 201
 6.11.4 Examples .. 202

7 Tests of Stochastic Ageing .. 203
 7.1 Introduction ... 203
 7.2 Exponential Distribution ... 204
 7.3 A General Sketch of Tests ... 204
 7.3.1 Estimation of Survival, Failure Rate and Mean Residual Life Functions 206
 7.4 Statistical Tests for Univariate Ageing Classes .. 206
 7.4.1 Some Common Bases for Test Statistics ... 207
 7.4.2 IFR Tests ... 207
 7.4.3 IFRA Tests ... 209
 7.4.4 NBU Tests ... 211
 7.4.5 NBUE Tests ... 214
 7.4.6 HNBUE .. 215
 7.4.7 NBU-t_0 .. 216
 7.4.8 NBUC Tests ... 218
 7.4.9 NBUFR (NWUFR) Test 218
 7.4.10 DPRL-α and NBUP-α Tests .. 218
 7.4.11 Summary of Tests of Basic Ageing Classes ... 219
 7.5 Tests of Aging Properties When Data Are Censored 222
 7.6 Tests of Monotonic Mean Residual Life Classes 223
 7.6.1 DMRL .. 223
 7.6.2 DMRLHA Test ... 226
 7.7 Tests of Non-monotonic Mean Residual Life ... 226
 7.7.1 IDMRL (DIMRL) Test When Turning Point τ Is Known 228
 7.7.2 IDMRL Test When the Proportion p Is Known 228
 7.7.3 Tests of IDMRL When Both p and τ Are Unknown 229
 7.7.4 Tests for NWBUE Class .. 231
 7.8 Tests of Exponentiality Versus Bathtub Distributions 231
7.8.1 Test Based on Total Time on Test (TTT) Transform . . . 231
7.8.2 Park’s Test for BT 234
7.8.3 Graphical Tests for BT Failure Rate Distributions . . . 234
7.9 Other Miscellaneous Tests 235
 7.9.1 Test of Change Point of Failure Rate 235
 7.9.2 Aly’s Tests for Change Point 235
 7.9.3 Testing Whether Lifetime Distribution Is Decreasing
 Uncertainty 235
7.10 Final Remarks .. 236

8 Bivariate and Multivariate Ageing 237
 8.1 Introduction .. 237
 8.2 Bivariate Reliability Classes 238
 8.2.1 Different Alternative Requirements 238
 8.3 Bivariate IFR ... 239
 8.4 Bivariate IFRA .. 241
 8.5 Bivariate NBU .. 243
 8.6 Bivariate NBUE and HNBUE 244
 8.7 Bivariate Decreasing Mean Residual Life 245
 8.8 Tests of Bivariate Ageing 246
 8.8.1 Summary on Tests of Bivariate Ageing 249
 8.9 Discrete Bivariate Failure Rates 250
 8.10 Applications .. 251
 8.10.1 Maintenance and Repairs 251
 8.10.2 Warranty Polices 252
 8.10.3 Failure Times of Pumps 252
 8.11 Bayesian Notions of Multivariate Ageing 252
 8.11.1 Motivations and Historical Development of Bayesian
 Approach .. 253
 8.11.2 Concepts of Ageing and Schur Concavity 253
 8.11.3 Bayesian Notions of Bivariate IFR 254
 8.11.4 Bayesian Bivariate DMRL 256
 8.11.5 Other Bayesian Bivariate Ageing Concepts 257
 8.12 Conclusions .. 258

9 Concepts and Measures of Dependence in Reliability 259
 9.1 Introduction ... 259
 9.2 Important Conditions Describing Positive Dependence 260
 9.2.1 Six Basic Conditions 261
 9.2.2 The Relative Stringency of the Conditions 263
 9.2.3 Associated Random Variables 264
 9.2.4 RCSI and LCSD 265
 9.2.5 WPQD .. 266
 9.2.6 Positively Correlated Distributions 266
 9.2.7 Summary of Interrelationships 266
9.3 Positive Quadrant Dependent (PQD) Concept 267
 9.3.1 Constructions of PQD Bivariate Distributions 269
 9.3.2 Applications of Positive Quadrant Dependence
 Concept to Reliability 269
9.4 Families of Bivariate Distributions That Are PQD 270
 9.4.1 PQD Bivariate Distributions with Simple Structures ... 271
 9.4.2 PQD Bivariate Distributions with More Complicated
 Structures .. 273
 9.4.3 PQD Bivariate Uniform Distributions 275
9.5 Some Related Issues on Bivariate Dependence 277
 9.5.1 Examples of Bivariate Positive Dependence Stronger
 than PQD Condition 277
 9.5.2 Examples of NQD and Other Negative Ageing 280
 9.5.3 Concluding Remarks on Concepts of Dependence 281
9.6 Links Between Dependence Concepts and Bivariate Ageing
 Notions .. 282
9.7 Dependence Concepts and Bayesian Multivariate Ageing 283
9.8 Positive Dependence Orderings 285
 9.8.1 More PQD .. 285
 9.8.2 More SI .. 286
 9.8.3 More Associated 287
 9.8.4 More TP2 ... 288
 9.8.5 Relations Among Different Partial Orderings 288
 9.8.6 Other Positive Dependence Orderings 289
 9.8.7 Multivariate Dependence Ordering 289
9.9 Measures of Dependence 290
9.10 Pearson’s Product-Moment Correlation Coefficient 291
 9.10.1 Robustness of Sample Correlation 292
 9.10.2 Interpretation of Correlation 293
9.11 Rank Correlations 294
 9.11.1 Kendall’s tau 295
 9.11.2 Spearman’s rho 296
 9.11.3 The Relationship between Kendall’s tau and
 Spearman’s rho 298
 9.11.4 Other Concordance Measures 300
9.12 Local Measures of Dependence 301
 9.12.1 Definition of Local Dependence 302
 9.12.2 Local Dependence Function of Holland and Wang 302
 9.12.3 Properties of $\gamma(x, y)$ 303
 9.12.4 Clayton-Oakes Association Measure 304
 9.12.5 Local ρ_S and τ 304
 9.12.6 Local Correlation Coefficient 305
 9.12.7 Local Linear Dependence Function 305
 9.12.8 Applications of Several Local Indices in Survival
 Analysis .. 306
10 Reliability of Systems with Dependent Components

10.1 Introduction .. 307
10.2 Bivariate Distributions for Modelling Lifetimes of Two Components .. 307
 10.2.1 Examples of Bivariate Distributions Useful for Reliability Modelling .. 309
 10.2.2 Other Bivariate Distributions .. 314
10.3 Effectiveness of Redundancy for Reliability System .. 314
 10.3.1 Redundancy 314
 10.3.2 Effectiveness of Parallel Redundancy of Two Independent and Identical Components .. 315
 10.3.3 Parallel Redundancy of Two Independent but Nonidentical Components .. 316
 10.3.4 Dependence Concepts and Redundancy .. 316
10.4 Parallel Systems ... 317
 10.4.1 Mean Time to Failure of a Parallel System of Two Independent Components .. 317
 10.4.2 Mean Lifetime of a Parallel System with Two PQD Components .. 317
 10.4.3 Mean Lifetime of a Parallel System with Two NQD Components .. 319
 10.4.4 Relative Efficiency from Different Joint Distributions .. 320
 10.4.5 MTTF Comparisons of Three PQD Bivariate Exponential Distributions .. 323
 10.4.6 Efficiency of Redundancy by NQD Components .. 324
10.5 Series Structures .. 325
 10.5.1 Series and Parallel System of n Positive Dependent Components .. 326
10.6 Ageing Classes for Series and Parallel Systems with Two Dependent Components .. 327
 10.6.1 Ageing Class 327
10.7 k-out-of-n Systems .. 329
 10.7.1 Reliability of a k-out-of-n System .. 329
 10.7.2 Ageing properties of a k-out-of-n system .. 330
 10.7.3 Comparative Studies of Two k-out-of-n Systems .. 331
 10.7.4 Ageing Properties Based on the Residual Life of a k-out-of-n System .. 335
 10.7.5 Dependent Component Lifetimes .. 335
10.8 Consecutive k-out-of-n:F Systems .. 336
 10.8.1 Reliability and Lifetime Distribution .. 337
 10.8.2 Structure Importance of Consecutive k-out-of-n Systems .. 339
XX Contents

10.8.4 Ageing Property ... 339
10.8.5 Consecutive-k-out-of-n:F System with Markov Dependence .. 340
10.9 On Allocation of Spares to k-out-of-n Systems 340
10.10 Standby Redundant System 342
10.10.1 Standby Redundancy in k-out-of-n Systems 342
10.10.2 Standby Redundancy at Component Versus System Level .. 343
10.10.3 Dependent Components 343
10.11 Future Directions ... 344

11 Failure Time Data ... 345
11.1 Introduction ... 345
11.2 Empirical Modelling of Data 345
11.3 Data Presentation and General Comments on Reliability Estimation ... 346
11.4 IFR Data .. 347
11.5 DFR Data .. 349
11.6 NBU Data .. 352
11.7 Bathtub Shaped Failure Rates Data 353
11.8 Upside-down Bathtub Shaped Failure Rates Data 358
11.9 Other Sources of Survival and Reliability Data 362

References .. 363

Index ... 409
Stochastic Ageing and Dependence for Reliability
Lai, C.-D.; Xie, M.
2006, XX, 418 p. 7 illus., Hardcover