Contents

1 Introduction ... 1
 1.1 Needs for Coatings .. 1
 1.2 Thin Films vs. Thick Films 2
 1.3 Thermal Spray Coating Concept 2
 1.4 Description of Different Thermal Spray Coating Processes . 4
 1.5 History of Thermal Spray 7
 1.6 Thermal Spray Applications 8
 1.7 Overview of Book Content 13
References .. 14

2 Overview of Thermal Spray 17
 2.1 Surface Treatments or Coatings 17
 2.1.1 Why Surface Treatment or Coatings 17
 2.1.2 Surface Treatments 18
 2.1.3 Coatings ... 19
 2.2 Brief Descriptions of Thermal Spray Applications 25
 2.3 Overview of Thermal Spray Processes 27
 2.3.1 Compressed Gas Expansion 28
 2.3.2 Combustion Spraying 28
 2.3.3 Electrical Discharge Plasma Spraying 28
 2.4 Substrate Preparation 32
 2.5 Energetic Gas Flow Generation 33
 2.5.1 Cold Spray ... 33
 2.5.2 Flame Spray ... 35
 2.5.3 High-Velocity Oxy-fuel Spraying 36
 2.5.4 Detonation Gun Spraying 38
 2.5.5 Direct Current Blown Arc Spraying or d.c. Plasma Spraying 39
 2.5.6 Vacuum Induction Plasma Spraying 40
 2.5.7 Wire Arc Spraying 42
 2.5.8 Plasma-Transferred Arc Deposition 43
Contents

2.6 Material Injection 44
 2.6.1 Powder Injection 44
 2.6.2 Wire, Rod, or Cord Injection 47
 2.6.3 Liquid Injection 50
2.7 Energetic Gas–Particle Interactions 51
 2.7.1 Momentum Transfer 51
 2.7.2 Heat Transfer 52
 2.7.3 Effect of the Surrounding Atmosphere 54
2.8 Coating Formation 57
 2.8.1 Coatings from Fully or Partially Melted Particles in Conventional Spraying 57
 2.8.2 Adhesion of Conventional Coatings 60
 2.8.3 Coatings Resulting from Solution or Suspension Spraying .. 63
 2.8.4 Residual Stresses 64
2.9 Control of Coating Formation 65
 2.9.1 Coating Temperature Control Before, During, and After Spraying 65
 2.9.2 Control of Other Spray Parameters 67
2.10 Summary and Conclusions 69
References .. 70

3 Fundamentals of Combustion and Thermal Plasma 73
 3.1 Combustion .. 73
 3.1.1 Definitions ... 73
 3.1.2 Combustion at Equilibrium 74
 3.1.3 Combustion Kinetics 76
 3.1.4 Combustion or Deflagrations, Detonations 79
 3.2 Thermal Plasmas Used for Spraying 84
 3.2.1 Definition ... 84
 3.2.2 Plasma Composition 85
 3.2.3 Thermodynamic Properties 88
 3.2.4 Transport Properties 89
 3.3 Basic Concepts in Modeling 95
 3.3.1 Introduction .. 95
 3.3.2 Conservation Equations 95
 3.3.3 Gas Composition, Thermodynamic, and Transport Properties 104
 3.4 Summary and Conclusions 106
References .. 110

4 Gas Flow–Particle Interaction 113
 4.1 Introduction .. 113
 4.2 Single Particle Trajectory 114
 4.2.1 Single Particle Motion 114
 4.2.2 Particle Injection and Trajectory 116
 4.2.3 Drag Coefficient: Micrometer Sized Single Sphere .. 128
4.2.4 Drag Coefficient: Submicron and Nanometer-Sized Particles 138

4.3 In-Flight Single Particle Heat and Mass Transfer and Chemical Reactions 140
 4.3.1 Basic Conduction, Convection, and Radiation Heat Transfers 140
 4.3.2 In-Flight Particle Heating and Melting ... 142
 4.3.3 Heat Transfer to a Single Sphere ... 148

4.4 Ensemble of Particles and High-Energy Jet ... 176
 4.4.1 General Remarks .. 176
 4.4.2 Particle Injection .. 178
 4.4.3 Particles and Plasma Jet with No Loading Effect ... 187
 4.4.4 Loading Effect ... 191

4.5 Liquid or Suspension Injection into a Plasma Flow ... 195
 4.5.1 Liquid Injection ... 196
 4.5.2 Liquid Penetration into the Plasma Flow ... 202
 4.5.3 Liquid Fragmentation ... 203
 4.5.4 In-Flight Heat Transfer to Droplets .. 207
 4.5.5 Cooling of the Plasma Flow by the Liquid ... 208
 4.5.6 Influence of Arc Root Fluctuations ... 209
 4.5.7 Case of No Fragmentation .. 211

4.6 Summary and Conclusions ... 212

References .. 215

5 Combustion Spraying Systems .. 227
 5.1 Historical Perspective and General Remarks ... 227
 5.2 Flame Spraying .. 228
 5.2.1 Principle ... 228
 5.2.2 Powder Flame Spraying .. 229
 5.2.3 Liquid Flame Spraying ... 235
 5.2.4 Wire, Rod, or Cord Spraying .. 235
 5.2.5 Flame Modeling ... 238
 5.3 High Velocity Flame Spraying (HVOF–HVAF) .. 239
 5.3.1 HVOF or HVAF Powder Spraying ... 239
 5.3.2 HVOF Wire Spraying .. 260
 5.3.3 Applications: General Remarks ... 262
 5.3.4 Coatings Sprayed with Combustible Gases and Oxygen 262
 5.3.5 Coatings Sprayed with Liquid Fuel and Oxygen .. 265
 5.3.6 HVOF–HVAF Modeling .. 266
 5.4 Detonation Gun (D-Gun) .. 269
 5.4.1 Process Description ... 269
 5.4.2 In-Flight Particle Properties ... 275
 5.4.3 Graded Coatings .. 278
 5.4.4 Coating Properties .. 278

5.5 Summary and Conclusions ... 290

References .. 292
6 Cold Spray .. 305
6.1 Introduction to the Different Cold Spray Processes 305
 6.1.1 High-Pressure Cold Spray 305
 6.1.2 Low Pressure Cold Spray 309
 6.1.3 Vacuum Cold Spray 311
6.2 High-Pressure Cold Spray Process 312
 6.2.1 Process Gas Dynamics 312
 6.2.2 Coating Adhesion and Cohesion 326
 6.2.3 Deposition Parameters 342
6.3 Coating Materials and Applications 356
 6.3.1 General Remarks 356
 6.3.2 Metals ... 356
 6.3.3 Composites 363
 6.3.4 Ceramics 366
6.4 Low Pressure Cold Spray (LPCS) 369
 6.4.1 Coating Formation 369
 6.4.2 Examples of Coatings 370
6.5 Summary and Conclusions 372
References ... 374

7 D.C. Plasma Spraying .. 383
7.1 Description of Concept 383
7.2 Equipment and Operating Parameters 386
7.3 Fundamentals of Plasma Torch Design 388
 7.3.1 Torch Cathode 389
 7.3.2 Arc Column 391
 7.3.3 Torch Anode 393
 7.3.4 Arc Voltage and Power Dissipation 394
 7.3.5 Arc Stability 394
 7.3.6 Electrode Erosion 400
7.4 Particle Injection 403
7.5 Plasma Torch and Spray Process Modeling 408
7.6 Plasma Torch and Jet Characterization: Time Averaged 412
 7.6.1 Effect of Plasma Gas 413
 7.6.2 Effect of Plasma Gas Injector Design 416
 7.6.3 Effect of Anode Nozzle Design 418
 7.6.4 Effect of Surrounding Atmosphere 421
 7.6.5 Effect of Cathode Shape 421
 7.6.6 Effect of Standoff Distance 422
 7.6.7 Summary of Design and Operating Parameters 424
7.7 Plasma Jet Characterization: Transient Behavior 424
 7.7.1 Plasma Jet Instability 424
 7.7.2 Effect of Arc Voltage Fluctuations on Plasma Jet and Particle Characteristics 427
7.8 Different Plasma Torch Concepts 433
 7.8.1 Shrouds and Other Fluid Dynamic Jet Stabilization 433
 7.8.2 Fixed Anode Attachment Position 437
 7.8.3 Central Injection Torches 440
 7.8.4 Torches for Inside Diameter Coatings 443
 7.8.5 High-Power Plasma Spray Torch 444
 7.8.6 Water-Stabilized Plasma Torch 444
7.9 Low Pressure and Controlled Atmosphere Plasma Spraying ... 446
7.10 Plasma-Sprayed Materials and Coatings 454
 7.10.1 Oxide Materials ... 455
 7.10.2 Non-oxide Ceramics 460
 7.10.3 Cermets .. 462
 7.10.4 Metals or Alloys .. 463
7.11 Summary and Conclusions ... 465
References ... 467
8 R.F. Induction Plasma Spraying 479
 8.1 Introduction .. 479
 8.2 The r.f. Induction Plasma Torch 481
 8.2.1 Basic Concepts .. 481
 8.2.2 Energy Coupling Mechanism 483
 8.2.3 Induction Plasma Torch Design 490
 8.2.4 Temperature, Fluid Flow, and Concentration Fields .. 497
 8.3 Modeling of the Inductively Coupled Plasma Discharge 509
 8.3.1 Basic Assumption ... 511
 8.3.2 Governing Equations 511
 8.3.3 Typical Results of Fluid Dynamic Modeling 521
 8.4 Plasma–Particle Interaction Model 532
 8.4.1 Governing Equations 534
 8.4.2 Typical Result: Effect of Particle Loading 536
 8.5 Vacuum Induction Plasma Spraying 549
 8.5.1 Basic Equipment Design 549
 8.5.2 Parametric Analysis and Operating Conditions 554
 8.5.3 Reactive Induction Plasma Spraying 562
 8.5.4 Suspension Induction Plasma Spraying 564
 8.5.5 Supersonic Induction Plasma Spraying 567
 8.6 Summary and Conclusions .. 569
References ... 571
9 Wire Arc Spraying ... 577
 9.1 Description of Concept ... 577
 9.2 Equipment and Operating Parameters 579
 9.3 Wire Materials and Specific Applications 582
 9.3.1 Wires ... 582
 9.3.2 Cored Wires ... 585
 9.4 Metal Droplet Formation ... 587
9.5 Process Characterization .. 597
 9.5.1 Gas Velocity Measurements 599
 9.5.2 Metal Droplet Velocity Distributions 600
 9.5.3 Metal Droplet Temperature 607
 9.5.4 Coating Characteristics 608
 9.5.5 Fume Formation .. 612
9.6 Process Modeling ... 613
9.7 Single Wire Arc Spraying 618
9.8 Special Developments: Low-Pressure Wire Arc and 90° Angle Spraying .. 622
9.9 Summary and Conclusions 623
References ... 624

10 Plasma-Transferred Arc ... 631
 10.1 Description of Concept 631
 10.1.1 Tungsten Inert Gas .. 633
 10.1.2 Metal Inert Gas ... 633
 10.2 Equipment and Operating Parameters 634
 10.3 Coating Materials and Applications 639
 10.3.1 Corrosion and Wear 639
 10.3.2 Self-Lubricating Coatings 641
 10.3.3 Rebuilding of Parts 642
 10.3.4 Free-Standing Shapes 642
 10.4 Process Characterization 642
 10.4.1 Temperature Distributions in the Arc and Arc Voltages .. 643
 10.4.2 Heat Flux to the Substrate 646
 10.4.3 PTA Process Modeling 650
 10.5 Effect of Process Parameter Changes on Coating Properties .. 652
 10.6 Process Modifications and Adaptations 655
 10.6.1 Variation of Ratio of Pilot Arc Current to Transfer Arc Current .. 656
 10.6.2 Variation of Powder Feed 656
 10.6.3 Nitriding of Coating 656
 10.6.4 Modulation of Deposition Parameters 657
 10.6.5 High-Energy PTA .. 658
 10.6.6 PTA Combined with Tape Casting 660
 10.6.7 PTA Deposition with a Negative Work Piece Polarity .. 660
 10.6.8 Hard Coatings on Magnesium 661
 10.7 Examples of Specific Applications 661
 10.7.1 Increasing Hardness .. 661
 10.7.2 Increasing Wear Resistance 662
12.5.3 Grit-Blasting Nozzles .. 767
12.5.4 Grit Material .. 768
12.5.5 Blasting Parameters ... 771
12.5.6 Grit Residues .. 776
12.5.7 Grit Wear ... 781
12.5.8 Residual Stress Induced by Grit Blasting 783
12.5.9 Conclusion ... 784

12.6 High-Pressure Water Jet Roughening 786
12.6.1 Equipment and Description of the Process 786
12.6.2 Water Jet-Blasting Parameters 788
12.6.3 Comparison Grit and Water Jet Blasting 792

12.7 Abrasive Water Jetting ... 793

12.8 Laser Treatment: Protal® Process 793
12.8.1 Laser Ablation .. 793
12.8.2 Protal® Experimental Setup 795
12.8.3 Example of Results ... 796

12.9 Summary and Conclusions 799

References .. 801

13 Conventional Coating Formation 807
13.1 Introduction ... 807
13.2 Spray Parameters .. 810

13.3 Physical and Chemical Description of Substrates 812
13.3.1 Physical Aspect of Substrate Surfaces 813
13.3.2 Oxide Layer Development on Metals or Alloys 816

13.4 Single Particle Impact, Flattening, and Solidification
(When Melted) ... 820
13.4.1 Introduction .. 820
13.4.2 Different Possibilities of Particle or Splat–Substrate Adhesion ... 822
13.4.3 Splat Formation from Unmelted Particles Impacting on Smooth Substrates 832
13.4.4 Splat Formation from Molten Particles Impacting onto Smooth Substrates 839
13.4.5 Splat Formation from Partially Molten Particles on Smooth Substrates 863
13.4.6 Splat Formation from Unmelted Particles Off Normal on Smooth Substrates 866
13.4.7 Flattening and Solidification of Molten Particle on a Smooth Substrate 866

13.5 Splat Formation on Rough Surfaces 868
13.5.1 Solid Ductile Particles 868
13.5.2 Molten Metal, Alloy, Ceramic, and Cermet Particles .. 869
13.5.3 Polymer Particles .. 873
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Nanostructured or Finely Structured Coatings</td>
<td>981</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>982</td>
</tr>
<tr>
<td>14.1.1 Why Nanostructured Coatings</td>
<td>982</td>
</tr>
<tr>
<td>14.1.2 How to Spray Nanostructure Coatings?</td>
<td>985</td>
</tr>
<tr>
<td>14.2 Spraying of Complex Alloys Containing Multiple Elements to Form Amorphous Coatings</td>
<td>987</td>
</tr>
<tr>
<td>14.2.1 Amorphous Alloys Containing Phosphorus</td>
<td>987</td>
</tr>
<tr>
<td>14.2.2 NiCrB and FeCrB Alloys</td>
<td>988</td>
</tr>
<tr>
<td>14.2.3 Iron-Based Amorphous Alloys</td>
<td>989</td>
</tr>
<tr>
<td>14.3 Agglomerated Ceramic Particles Spraying with Hot Gases</td>
<td>993</td>
</tr>
<tr>
<td>14.3.1 Spray Conditions</td>
<td>993</td>
</tr>
<tr>
<td>14.3.2 Applications</td>
<td>1004</td>
</tr>
<tr>
<td>14.4 Attrition or Ball Milled Cermets or Alloy Particles Sprayed with Hot Gases</td>
<td>1013</td>
</tr>
<tr>
<td>14.4.1 Alloys</td>
<td>1014</td>
</tr>
<tr>
<td>14.4.2 Cermets</td>
<td>1015</td>
</tr>
<tr>
<td>14.5 Spraying Hypereutectic Alloys with Hot Gases</td>
<td>1017</td>
</tr>
<tr>
<td>14.6 Production of Nanostructured Coatings by Cold Spray</td>
<td>1019</td>
</tr>
<tr>
<td>14.6.1 Alloys</td>
<td>1019</td>
</tr>
<tr>
<td>14.6.2 Composites</td>
<td>1020</td>
</tr>
<tr>
<td>14.6.3 Amorphous Alloys</td>
<td>1022</td>
</tr>
<tr>
<td>14.7 Solutions or Suspensions Spraying</td>
<td>1023</td>
</tr>
<tr>
<td>14.7.1 Sub-Micrometer and Nanometer-Sized Particles in Plasma or HVOF Jets</td>
<td>1024</td>
</tr>
<tr>
<td>14.7.2 Liquid Injection</td>
<td>1030</td>
</tr>
<tr>
<td>14.7.3 Spray Torches Used</td>
<td>1037</td>
</tr>
<tr>
<td>14.7.4 Solutions or Suspensions Preparation</td>
<td>1040</td>
</tr>
<tr>
<td>14.7.5 Liquid Stream: Hot Flow Interactions</td>
<td>1045</td>
</tr>
<tr>
<td>14.7.6 Coating Manufacturing Mechanisms</td>
<td>1056</td>
</tr>
<tr>
<td>14.7.7 Applications</td>
<td>1083</td>
</tr>
<tr>
<td>14.8 Summary and Conclusions</td>
<td>1093</td>
</tr>
<tr>
<td>References</td>
<td>1096</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Coating Characterizations</td>
<td>1113</td>
</tr>
<tr>
<td>15.1 Introduction to Coating Characterizations and Testing Methods</td>
<td>1115</td>
</tr>
<tr>
<td>15.1.1 Differences Between Coatings and Bulk Materials</td>
<td>1115</td>
</tr>
<tr>
<td>15.1.2 Characterization and Testing Methods Used for Coatings</td>
<td>1116</td>
</tr>
<tr>
<td>15.1.3 Statistical Methods</td>
<td>1117</td>
</tr>
<tr>
<td>15.2 Nondestructive Methods</td>
<td>1121</td>
</tr>
<tr>
<td>15.2.1 Visual Inspection</td>
<td>1121</td>
</tr>
</tbody>
</table>
15.2.2 Laser Inspection ... 1122
15.2.3 Coordinate Measuring Machines 1122
15.2.4 Machine Vision and Robotic Evaluation 1122
15.2.5 Acoustic Emission ... 1123
15.2.6 Laser-Ultrasonic Techniques 1123
15.2.7 Thermography .. 1124
15.2.8 Coating Thickness ... 1125
15.3 Metallography and Image Analysis 1125
15.3.1 Coating Preparation ... 1126
15.3.2 Microscopy ... 1131
15.4 Materials Characterization 1137
15.4.1 X-Ray Spectroscopy or X-Ray Fluorescence 1138
15.4.2 Infrared Spectroscopy 1138
15.4.3 Mössbauer Spectroscopy 1139
15.4.4 X-Ray Diffraction .. 1139
15.4.5 Small- and Ultrasmall-Angle X-Ray Diffraction (USAXF) ... 1141
15.4.6 Neutron Scattering .. 1143
15.4.7 X-Ray Absorption Spectroscopy 1145
15.4.8 Electron Probe X-Ray Microanalysis 1146
15.4.9 Auger Electron Spectroscopy 1146
15.4.10 X-Ray Photoelectron Spectroscopy 1146
15.4.11 Other Techniques ... 1147
15.5 Void Content and Network Architecture 1147
15.5.1 Archimedean Porosimetry 1149
15.5.2 Mercury Intrusion Porosimetry (MIP) 1150
15.5.3 Gas Permeation and Pycnometry 1150
15.5.4 Small-Angle Neutrons Scattering 1152
15.5.5 Ultrasmall-Angle X-Ray Scattering 1153
15.5.6 Stereological Protocols (Coupled to Image Analysis) (ST) ... 1155
15.5.7 Electrochemical Impedance Spectroscopy 1160
15.6 Adhesion–Cohesion ... 1161
15.6.1 Introduction .. 1161
15.6.2 Simple Adhesion Tensile Test 1162
15.6.3 Other Types of Tensile Tests 1164
15.6.4 Shear Stress .. 1166
15.6.5 Fracture Mechanics Approach 1167
15.6.6 Bending Test: Adhesion and Interface Toughness Measurements ... 1169
15.6.7 Indentation: Interface Toughness Measurement 1171
15.6.8 Other Methods .. 1173
15.7 Mechanical Properties .. 1177
15.7.1 Hardness and Indentation Test 1177
15.7.2 Young’s Modulus .. 1184
15.7.3 Toughness ... 1186
15.7.4 Residual Stress 1187
15.8 Thermal Properties 1193
 15.8.1 Mass Density 1193
 15.8.2 Expansion Coefficient 1194
 15.8.3 Thermal Conductivity and Thermal Diffusivity 1194
 15.8.4 Specific Heat at Constant Pressure 1196
 15.8.5 Thermal Shock Resistance 1197
 15.8.6 Differential Thermal Analysis, Thermogravimetry,
 and Differential Scanning Calorimetry 1199
15.9 Wear Resistance 1203
 15.9.1 Abrasive Wears 1203
 15.9.2 Adhesive Wears 1204
 15.9.3 Erosive Wear 1206
 15.9.4 Surface Fatigue 1209
 15.9.5 Corrosive Wears 1213
 15.9.6 Fretting .. 1217
15.10 Corrosion Resistance 1218
 15.10.1 General Remarks 1218
 15.10.2 Corrosion Characterization 1222
15.11 Summary and Conclusions 1225
References .. 1235

16 Process Diagnostics and Online Monitoring and Control 1251
16.1 Introduction .. 1252
 16.1.1 What Is Expected from Thermal-Sprayed
 Coatings? ... 1252
 16.1.2 Coatings Repeatability, Reliability,
 and Reproducibility 1252
 16.1.3 How Sprayed Coatings Quality Was Improved
 Through the Spray Process Monitoring 1255
 16.1.4 Spray Process Parameters That Should
 Be Controlled 1257
16.2 High-Energy Jets Characterization 1258
 16.2.1 Plasma Jets 1259
 16.2.2 Flames and Cold Spray 1266
16.3 Sensors ... 1269
 16.3.1 Hot Gases Flow: Enthalpy Probe 1270
 16.3.2 Particles In-Flight Distribution 1274
 16.3.3 In-Flight Hot Particle Temperature
 and Velocity Measurement 1284
 16.3.4 In-Flight Velocity Measurements
 of Cold Particles 1303
 16.3.5 Are Such Measurements Sufficient
 to Monitor Coating Properties? 1306
 16.3.6 Coating Under Formation 1308
16.4 Online Control or Monitoring? 1311
 16.4.1 Coating Properties Monitoring 1311
 16.4.2 Online Control? 1320
16.5 Other Possible Measurements 1320
 16.5.1 Particle Vaporization 1320
 16.5.2 Splat Formation 1321
 16.5.3 Plasma-Liquid Injection 1328
16.6 Summary and Conclusions 1333
References .. 1337

17 Process Integration ... 1351
17.1 Introduction ... 1352
17.2 Potential and Real Risks 1352
 17.2.1 Powders: Respiratory Problems and Explosions 1353
 17.2.2 Gases ... 1355
 17.2.3 Prevention and Safety Measures 1357
 17.2.4 Other Risks .. 1359
17.3 Ancillary Equipment .. 1362
 17.3.1 The Spray Booth 1362
 17.3.2 Exhaust Systems 1365
 17.3.3 Power Supply .. 1365
 17.3.4 Gas Supply .. 1366
 17.3.5 Compressed Air Supply 1366
 17.3.6 Cooling Water 1366
 17.3.7 Micrometer-Sized Powder Feeders and Solutions or Suspensions Feeders 1367
 17.3.8 Gun Movements 1368
 17.3.9 Control Panel .. 1368
17.4 Controlled Atmosphere 1368
 17.4.1 Soft Vacuum Plasma Spraying 1368
 17.4.2 Vapor Phase Deposition 1373
 17.4.3 Inert Plasma Spraying 1374
 17.4.4 Cold Spray with Helium 1375
17.5 Finishing and Post-Treatment of Coatings 1375
 17.5.1 Finishing .. 1376
 17.5.2 Fusion of Self-Fluxing Alloys 1378
 17.5.3 Heat Treating or Annealing 1381
 17.5.4 Hot Isostatic Pressing 1383
 17.5.5 Austempering Heat Treatment 1384
 17.5.6 Laser Glazing 1384
 17.5.7 Sealing .. 1387
 17.5.8 Spark Plasma Sintering 1392
 17.5.9 Peening or Rolling Densification 1392
 17.5.10 Diffusion .. 1393
17.6 Summary and Conclusions 1393
References .. 1394
18 Industrial Applications of Thermal Spraying Technology .. 1401
 18.1 Introduction .. 1403
 18.2 Advantages and Limitations of the Different Spray Processes 1404
 18.2.1 Flame Spraying ... 1404
 18.2.2 D-Gun Spraying ... 1406
 18.2.3 HVOF–HVAF Spraying ... 1406
 18.2.4 Wire Arc Spraying ... 1407
 18.2.5 Plasma Spraying ... 1407
 18.2.6 Plasma-Transferred Arcs (PTA) ... 1409
 18.2.7 Plasma Transferred Arc .. 1410
 18.2.8 Cold Spray ... 1411
 18.3 Thermal-Sprayed Coating Applications .. 1411
 18.3.1 Wear Resistant Coatings .. 1412
 18.3.2 Corrosion and Oxidation Resistant Coating ... 1433
 18.3.3 Thermal Protection Coatings ... 1446
 18.3.4 Clearance Control Coatings ... 1455
 18.3.5 Bonding Coatings ... 1457
 18.3.6 Electrical and Electronic Coatings .. 1458
 18.3.7 Freestanding Spray-Formed Parts ... 1462
 18.3.8 Medical Applications .. 1466
 18.3.9 Replacement of Hard Chromium ... 1469
 18.3.10 Applications Under Developments ... 1471
 18.4 Thermal-Sprayed Coatings by Industry .. 1474
 18.4.1 Aerospace .. 1475
 18.4.2 Land-Based Turbines .. 1478
 18.4.3 Automotive ... 1478
 18.4.4 Electrical and Electronic Industries ... 1481
 18.4.5 Corrosion Applications for Land-Based and Marine Applications 1483
 18.4.6 Medical Applications .. 1486
 18.4.7 Ceramic and Glass Manufacturing .. 1487
 18.4.8 Printing Industry ... 1488
 18.4.9 Pulp and Paper ... 1490
 18.4.10 Metal Processing Industries ... 1492
 18.4.11 Petroleum and Chemical Industries .. 1495
 18.4.12 Electrical Utilities .. 1498
 18.4.13 Textile and Plastic Industries .. 1499
 18.4.14 Polymers ... 1499
 18.4.15 Reclamation .. 1501
 18.4.16 Other Applications .. 1503
 18.4.17 Thermal-Sprayed Coatings in the Different Countries 1505
18.5 Economic Analysis of the Different Spray Processes 1513
18.5.1 Different Cost Contribution Factors 1513
18.5.2 Direct Cost Factors 1514
18.5.3 Indirect or Fixed Cost Factors 1521
18.5.4 Few Examples .. 1522
18.6 Summary and Conclusions 1529
References .. 1545
Thermal Spray Fundamentals
From Powder to Part
Fauchais, P.L.; Heberlein, J.V.R.; Boulos, M.
2014, LVI, 1566 p. 953 illus., 235 illus. in color. In 2 volumes, not available separately. Hardcover