Global Optimization:
from Theory to Implementation

LEO LIBERTI
DEI, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy

NELSON MACULAN
COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68511, 21941-972 Rio de Janeiro, Brazil

Submitted: 23rd June 2005
To Anne-Marie and Kja
Preface

The idea for this book was born on the coast of Serbia-Montenegro, in October 2003, when we were invited to the thirtieth Serbian Conference on Operations Research (SYM-OP-IS 2003). During those days we talked about many optimization problems, going from discussion to implementation in a matter of minutes, reaping good profits from the whole “hands-on” process, and having a lot of fun in the meanwhile. All the wrong ideas were weeded out almost immediately by failed computational experiments, so we wasted little time on those. Unfortunately, translating ideas into programs is not always fast and easy, and moreover the amount of literature about the implementation of global optimization algorithm is scarce.

The scope of this book is that of moving a few steps towards the systematization of the path that goes from the invention to the implementation and testing of a global optimization algorithm. The works contained in this book have been written by various researchers working at academic or industrial institutions; some very well known, some less famous but expert nonetheless in the discipline of actually getting global optimization to work.

The papers in this book underline two main developments in the implementation side of global optimization: firstly, the introduction of symbolic manipulation algorithms and automatic techniques for carrying out algebraic transformations; and secondly, the relatively wide availability of extremely efficient global optimization heuristics and metaheuristics that target large-scale nonconvex constrained optimization problems directly.

The book is divided in three parts. The first part is about new global optimization methods. The chapters in the first part are rather theoretical in nature, although a computational experiments section is always present. The second part is oriented towards the implementation, focusing on description of existing solvers and guidelines about building new global optimization software. This part follows two main trends: the first four chapters deal with continuous methods, the last three with combinatorial ones. The third (and last) part presents two applications of global optimization in Data Mining and Molecular Conformation.
More specifically, a lot of work has been carried out on the application of Variable Neighbourhood Search to global optimization (Chapters 6, 8, 10 and 11). A MultiStart-type algorithm based on low-discrepancy sequences generated deterministically has also been thoroughly explored (Chapters 5, 8). A full description of an API for interfacing to metaheuristic codes is given in Chapter 11. Deterministic algorithms can be found in Chapters 1 (Branch-and-Bound algorithms), 3 (a Cutting Plane algorithm), 4 (a Branch-and-Bound based method for stochastic mixed-integer nonlinear problems) and 8 (where the implementation of a spatial Branch-and-Bound algorithm is described).

Chapter 1 and 2 are more theoretical than most other chapters. Chapter 1 considers global optimization problems where the objective functions and constraints are difference of monotonic functions, and proposes some deterministic solution methods; Chapter 2 reports on a special local search method for reverse convex problems. In both chapters, a section on computational results is presented, discussing the efficiency of different solution approaches.

Chapter 4 describes one of the very few existing implementations of a deterministic global optimization software targeting robust nonconvex programming. In order to face the huge computational resources needed to solve multi-scenario nonconvex problems, the author proposes a Branch-and-Bound approach where the lower bounds are computed by solving a nonconvex Lagrangian relaxation through a standard global optimization algorithm. This multi-level solution method requires careful software design to obtain a working implementation.

As has been mentioned, a particularly important development is the introduction of symbolic manipulation algorithms in optimization. Chapter 7 describes a modelling language by which it is possible to keep track of the convexity property of the optimization problem being described. Although Chapter 7 is about convex programming, the role of convexity is so important in Branch-and-Bound based algorithms for global optimization that it was decided to include it in this book. In Chapter 8 the reader can find the description of some symbolic algorithms for differentiation, algebraic simplification and generation of convex relaxations. Chapter 3 introduces some effective convexity transformations for a large class of multilinear problems, as well as discussing some nonlinear cuts. Chapter 10 employs even more sophisticated symbolic techniques about automated theorem proving.

Chapters 9 and 12 describe working implementations of commercial-grade software. In particular, Chapter 9 is about the Lipschitz Global Optimization (LGO) solver suite, and its embedding within the Mathematica software framework; Chapter 12 describes a solver for Mixed-Integer Linear Programming problems (commercialized by Process Systems Enterprise, Ltd.): this software relies on CORBA techniques to automate the parallelization and distributed running of the solver.

As far as the applications are concerned, Chapter 13 describes an extremely interesting class of problems arising in Data Mining and Nonlinear
Classification. Chapter 14 describes a new way to generate instances for the Molecular Distance Geometry Problem, which is one of the hardest problems in Molecular Conformation.

Some of these papers have inter-relations and cross-references, due both to collaborations among the authors and to emergence of new trends in global optimization. Most of these inter-relations have been emphasized by means of footnotes, which have all been added by the editors.

We hope that the reader will find this book interesting and enlightening, and that it will serve as a source of ideas as well as a desktop companion for people who need to implement global optimization software.

Milano, Rio de Janeiro
June 2005

Leo Liberti
Nelson Maculan
Contents

Optimization under Composite Monotonic Constraints and Constrained Optimization over the Efficient Set

Hoang Tuy, N.T. Hoai-Phuong .. 3

1 Introduction .. 3
2 Some basic concepts and results of monotonic optimization 5
3 Problems with composite monotonic constraints 7
4 Constrained optimization over the efficient set 11
5 Solution method for problem (Q) ... 15
6 Improvements for problems (OWE) and (OE) 19
7 Problems with a composite monotonic objective function .. 25
8 Illustrative examples and computational results 26
References .. 29

On a Local Search for Reverse Convex Problems

Alexander Strekalovsky .. 33

1 Introduction .. 33
2 Some features of RCP ... 34
3 Local search methods ... 36
4 Computational testing ... 40
5 Conclusion .. 42
References .. 42

Some Transformation Techniques in Global Optimization

Tapio Westerlund .. 45

1 Introduction .. 45
2 The MINLP Problem ... 46
3 The transformation approach .. 47
4 Examples of transformations .. 52
5 The GGPECP algorithm .. 55
6 Convergence to the globally optimal solution 57
7 A numerical example .. 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII Contents</td>
<td>64</td>
</tr>
<tr>
<td>8 Some aspects on the numerical solution approach</td>
<td>70</td>
</tr>
<tr>
<td>References</td>
<td>71</td>
</tr>
<tr>
<td>Solving Nonlinear Mixed Integer Stochastic Problems: a Global Perspective</td>
<td>75</td>
</tr>
<tr>
<td>Maria Elena Bruni</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>76</td>
</tr>
<tr>
<td>2 Motivations</td>
<td>76</td>
</tr>
<tr>
<td>3 SMINLP: state of the art</td>
<td>77</td>
</tr>
<tr>
<td>4 Problem formulation</td>
<td>84</td>
</tr>
<tr>
<td>5 The two-phase solution approach</td>
<td>86</td>
</tr>
<tr>
<td>6 Illustrative application: the Stochastic Trim Loss Problem</td>
<td>98</td>
</tr>
<tr>
<td>7 Concluding Remarks</td>
<td>104</td>
</tr>
<tr>
<td>References</td>
<td>106</td>
</tr>
<tr>
<td>Application of Quasi Monte Carlo Methods in Global Optimization</td>
<td>111</td>
</tr>
<tr>
<td>Sergei Kucherenko</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>111</td>
</tr>
<tr>
<td>2 Analysis of Quasirandom Search methods</td>
<td>114</td>
</tr>
<tr>
<td>3 Single linkage and multilevel single linkage methods</td>
<td>117</td>
</tr>
<tr>
<td>4 Computational experiments</td>
<td>120</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td>131</td>
</tr>
<tr>
<td>References</td>
<td>131</td>
</tr>
<tr>
<td>GLOB – A new VNS-based Software for Global Optimization</td>
<td>135</td>
</tr>
<tr>
<td>M. Dražić, V. Kovacevic–Vujčić, M. Cangalović, N. Mladenović</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>135</td>
</tr>
<tr>
<td>2 VNS methodology</td>
<td>136</td>
</tr>
<tr>
<td>3 Software package GLOB</td>
<td>137</td>
</tr>
<tr>
<td>4 Numerical experiments</td>
<td>141</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td>147</td>
</tr>
<tr>
<td>References</td>
<td>148</td>
</tr>
<tr>
<td>Disciplined Convex Programming</td>
<td>155</td>
</tr>
<tr>
<td>Michael Grant, Stephen Boyd, Yinyu Ye</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>155</td>
</tr>
<tr>
<td>2 Motivation</td>
<td>156</td>
</tr>
<tr>
<td>3 Convex programming</td>
<td>162</td>
</tr>
<tr>
<td>4 Modeling frameworks</td>
<td>169</td>
</tr>
<tr>
<td>5 Disciplined convex programming</td>
<td>171</td>
</tr>
<tr>
<td>6 The convexity ruleset</td>
<td>172</td>
</tr>
<tr>
<td>7 The atom library</td>
<td>183</td>
</tr>
<tr>
<td>8 Verification</td>
<td>188</td>
</tr>
<tr>
<td>9 Creating disciplined convex programs</td>
<td>191</td>
</tr>
</tbody>
</table>
Writing Global Optimization Software
Leo Liberti
1 Introduction .. 211
2 Global Optimization algorithms 214
3 Global Optimization software 223
4 Optimization software framework design 232
5 Symbolic manipulation of mathematical expressions ... 240
6 Local solvers .. 247
7 Global solvers .. 248
8 Conclusion .. 257
References .. 258

MathOptimizer Professional: Key Features and Illustrative Applications
János D. Pintér, Frank J. Kampas
1 Introduction .. 263
2 Global Optimization ... 266
3 LGO Solver Suite ... 267
4 MathOptimizer Professional 268
5 Illustrative applications: solving sphere packing models 271
6 Conclusions ... 276
References .. 277

Variable Neighborhood Search for Extremal Graphs 14: The AutoGraphiX 2 System
M. Aouchiche, J.M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lacheré, A. Monhait
1 Introduction .. 281
2 AGX 2 Interactive functions 283
3 Algebraic syntax used in AutoGraphiX 291
4 Optimization using Variable Neighborhood Search ... 294
5 AutoGraphiX Tasks ... 299
6 Automated proofs .. 301
7 Some examples .. 305
8 Conclusion ... 308
References .. 308

From Theory to Implementation: Applying Metaheuristics.
I.J. García del Amo, F. García López, M. García Torres, B. Melián Batista, J.A. Moreno Pérez, J.M. Moreno Vega
1 Introduction .. 311
2 Class hierarchy .. 316
ooMILP – A C++ Callable Object-oriented Library and the Implementation of its Parallel Version using CORBA
Panagiotis Tsiakis, Benjamin Keeping

Global Order-Value Optimization by means of a Multistart Harmonic Oscillator Tunneling Strategy
R. Andreani, J.M. Martinez, M. Salvatierra, F. Yano

On generating Instances for the Molecular Distance Geometry Problem
Carlile Lavor
Global Optimization
From Theory to Implementation
Liberti, L.; Maculan, N. (Eds.)
2006, XIV, 428 p., Hardcover