I Introductory Material

1 Introduction

2 Motivating Studies
6.6.2 Three-way Contingency Tables 72
6.7 Relation to Latent Continuous Densities 79
6.8 Conclusions and Perspective 80

7 Likelihood-based Marginal Models 83
7.1 Notation ... 84
7.2 The Bahadur Model 86
 7.2.1 A General Bahadur Model Formulation 86
 7.2.2 The Bahadur Model for Clustered Data 88
 7.2.3 Analysis of the NTP Data 90
 7.2.4 Analysis of the Fluoxetine Data 92
7.3 A General Framework for Fully Specified Marginal Models .. 93
 7.3.1 Univariate Link Functions 94
 7.3.2 Higher-order Link Functions 94
7.4 Maximum Likelihood Estimation 99
7.5 An Influenza Study 99
 7.5.1 The Cross-over Study 100
 7.5.2 The Longitudinal Study 101
7.6 The Multivariate Probit Model 102
 7.6.1 Probit Models 103
 7.6.2 Tetrachoric and Polychoric Correlation 104
 7.6.3 The Univariate Probit Model 105
 7.6.4 The Bivariate Probit Model 106
 7.6.5 Ordered Categorical Outcomes 110
 7.6.6 The Multivariate Probit Model 112
7.7 The Dale Model ... 113
 7.7.1 Two Binary Responses 113
 7.7.2 The Bivariate Dale Model 115
 7.7.3 Some Properties of the Bivariate Dale Model 117
 7.7.4 The Multivariate Plackett Distribution 117
 7.7.5 The Multivariate Dale Model 117
 7.7.6 Maximum Likelihood Estimation 119
 7.7.7 The BIRNH Study 119
7.8 Hybrid Marginal-conditional Specification 122
 7.8.1 A Mixed Marginal-conditional Model 123
 7.8.2 Categorical Outcomes 126
7.9 A Cross-over Trial: An Example in Primary Dysmenorrhoea .. 127
 7.9.1 Analyzing Cross-over Data 128
 7.9.2 Analysis of the Primary Dysmenorrhoea Data 130
7.10 Multivariate Analysis of the POPS Data 131
7.11 Longitudinal Analysis of the Fluoxetine Study 134
7.12 Appendix: Maximum Likelihood Estimation 136
8 Generalized Estimating Equations 151
 8.1 Introduction 151
 8.2 Standard GEE Theory 153
 8.3 Alternative GEE Methods 161
 8.4 Prentice’s GEE Method 162
 8.5 Second-order Generalized Estimating Equations (GEE2) 164
 8.6 GEE with Odds Ratios and Alternating Logistic Regression 165
 8.7 GEE2 Based on a Hybrid Marginal-conditional Model 168
 8.8 A Method Based on Linearization 169
 8.9 Analysis of the NTP Data 170
 8.10 The Heatshock Study 174
 8.11 The Sports Injuries Trial 181
 8.11.1 Longitudinal Analysis 181
 8.11.2 A Bivariate Longitudinal Analysis 186
9 Pseudo-Likelihood 189
 9.1 Introduction 189
 9.2 Pseudo-Likelihood: Definition and Asymptotic Properties 190
 9.2.1 Definition 190
 9.2.2 Consistency and Asymptotic Normality 191
 9.3 Pseudo-Likelihood Inference 192
 9.3.1 Wald Statistic 193
 9.3.2 Pseudo-Score Statistics 193
 9.3.3 Pseudo-Likelihood Ratio Statistics 194
 9.4 Marginal Pseudo-Likelihood 195
 9.4.1 Definition of Marginal Pseudo-Likelihood 195
 9.4.2 A Generalized Linear Model Representation 198
 9.5 Comparison with Generalized Estimating Equations 199
 9.6 Analysis of NTP Data 200
10 Fitting Marginal Models with SAS 203
 10.1 Introduction 203
 10.2 The Toenail Data 203
III Conditional Models

11 Conditional Models

11.1 Introduction
11.2 Conditional Models
 11.2.1 A Pure Multivariate Setting
 11.2.2 A Single Repeated Outcome
 11.2.3 Repeated Multivariate Outcomes
11.3 Marginal versus Conditional Models
11.4 Analysis of the NTP Data
11.5 Transition Models
 11.5.1 Analysis of the Toenail Data
 11.5.2 Fitting Transition Models in SAS

12 Pseudo-Likelihood

12.1 Introduction
12.2 Pseudo-Likelihood for a Single Repeated Binary Outcome
12.3 Pseudo-Likelihood for a Multivariate Repeated Binary Outcome
12.4 Analysis of the NTP Data
 12.4.1 Parameter Estimation
 12.4.2 Inference and Model Selection

IV Subject-specific Models

13 From Subject-specific to Random-effects Models

13.1 Introduction
13.2 General Model Formulation
13.3 Three Ways to Handle Subject-specific Parameters
V Case Studies and Extensions 307

17 The Analgesic Trial 309
17.1 Introduction 309
17.2 Marginal Analyses of the Analgesic Trial 310
17.3 Random-effects Analyses of the Analgesic Trial 314
17.4 Comparing Marginal and Random-effects Analyses 317
17.5 Programs for the Analgesic Trial 318
 17.5.1 Marginal Models with SAS 318
 17.5.2 Random-effects Models with SAS 320
 17.5.3 MIXOR 321
 17.5.4 MLwiN 323

18 Ordinal Data 325
18.1 Regression Models for Ordinal Data 326
 18.1.1 The Fluvoxamine Trial 328
18.2 Marginal Models for Repeated Ordinal Data 329
18.3 Random-effects Models for Repeated Ordinal Data 331
18.4 Ordinal Analysis of the Analgesic Trial 332
18.5 Programs for the Analgesic Trial 334

19 The Epilepsy Data 337
19.1 Introduction 337
19.2 A Marginal GEE Analysis 337
19.3 A Generalized Linear Mixed Model 340
19.4 Marginalizing the Mixed Model 342

20 Non-linear Models 347
20.1 Introduction 347
20.2 Univariate Non-linear Models 349
20.3 The Indomethacin Study: Non-hierarchical Analysis 351
20.4 Non-linear Models for Longitudinal Data 355
20.5 Non-linear Mixed Models 357
20.6 The Orange Tree Data 358
20.7 Pharmacokinetic and Pharmacodynamic Models 360
 20.7.1 Hierarchical Analysis of the Indomethacin Study 361
 20.7.2 Pharmacokinetic Modeling and the Theophylline Data 363
20.7.3 Pharmacodynamic Data
20.8 The Songbird Data
20.8.1 Introduction
20.8.2 A Non-linear Mixed-effects Model
20.8.3 Analysis of SI at RA
20.8.4 Model Strategies for HVC
20.8.5 Analysis of SI at HVC
20.9 Discrete Outcomes
20.10 Hypothesis Testing and Non-linear Models
20.11 Flexible Functions
20.11.1 Random Smoothing Splines
20.11.2 Analysis of the Analgesic Trial
20.12 Using SAS for Non-linear Mixed-effects Models
20.12.1 SAS Program for the Orange Tree Data
20.12.2 SAS Programs for the Indomethacin Analyses
20.12.3 SAS Programs for the Theophylline Analyses
20.12.4 SAS Program for the Songbird Data
20.12.5 SAS Program for the NTP Data
20.12.6 SAS Program for the Random Smoothing Spline Model
21 Pseudo-Likelihood for a Hierarchical Model
21.1 Introduction
21.2 Pseudo-Likelihood Estimation
21.3 Two Binary Endpoints
21.4 A Meta-analysis of Trials in Schizophrenic Subjects
21.5 Concluding Remarks
22 Random-effects Models with Serial Correlation
22.1 Introduction
22.2 A Multilevel Probit Model with Autocorrelation
22.3 Parameter Estimation for the Multilevel Probit Model
22.4 A Generalized Linear Mixed Model with Autocorrelation
22.5 A Meta-analysis of Trials in Schizophrenic Subjects
22.6 SAS Code for Random-effects Models with Autocorrelation
22.7 Concluding Remarks
23 Non-Gaussian Random Effects
23.1 Introduction
 Contents

32.6.4 The MI Procedure to Create Monotone Missingness .. 633
32.7 The EM Algorithm .. 633
32.8 MNAR Models and Sensitivity Analysis Tools 635

References .. 637

Index ... 671
Models for Discrete Longitudinal Data
Molenberghs, G.; Verbeke, G.
2005, XXII, 687 p., Hardcover
ISBN: 978-0-387-25144-8