Contents

Introduction and Survey

1.1 Prolog
 1.1.1 From Werner to the new transition metal chemistry
 1.1.2 Prior to about 1963

1.2 How It All Began
 1.2.1 Rhenium chemistry from 1963 to 1965
 1.2.2 The recognition of the quadruple bond
 1.2.3 Initial work on other elements

1.3 An Overview of the Multiple Bonds
 1.3.1 A qualitative picture of the quadruple bond
 1.3.2 Bond orders less than four
 1.3.3 Oxidation states

1.4 Growth of the Field

1.5 Going Beyond Two

Complexes of the Group 5 Elements

2.1 General Remarks

2.2 Divanadium Compounds
 2.2.1 Triply-bonded divanadium compounds
 2.2.2 Metal–metal vs metal–ligand bonding
 2.2.3 Divanadium compounds with the highly reduced V$_2^{3+}$ core

2.3 Diniobium Compounds
 2.3.1 Diniobium paddlewheel complexes
 2.3.2 Diniobium compounds with calix[4]arene ligands and related species

2.4 Tantalum
Chromium Compounds

3.1 Dichromium Tetracarboxylates 35
 3.1.1 History and preparation 35
 3.1.2 Properties of carboxylate compounds 38
 3.1.3 Unsolvated Cr₂(O₂CR)₄ compounds 40

3.2 Other Paddlewheel Compounds 43
 3.2.1 The first ‘supershort’ bonds 43
 3.2.2 2-Oxopyridinate and related compounds 47
 3.2.3 Carboxamidate compounds 50
 3.2.4 Amidinate compounds 52
 3.2.5 Guanidinate compounds 56

3.3 Miscellaneous Dichromium Compounds 57
 3.3.1 Compounds with intramolecular axial interactions 57
 3.3.2 Compounds with Cr–C bonds 60
 3.3.3 Other pertinent results 61

3.4 Concluding Remarks 65

Molybdenum Compounds

4.1 Dimolybdenum Bridged by Carboxylates or Other O,O Ligands 69
 4.1.1 General remarks 69
 4.1.2 Mo₂(O₂CR)₄ compounds 70
 4.1.3 Other compounds with bridging carboxyl groups 79
 4.1.4 Paddlewheels with other O,O anion bridges 92

4.2 Paddlewheel Compounds with O,N, N,N and Other Bridging Ligands 95
 4.2.1 Compounds with anionic O,N bridging ligands 95
 4.2.2 Compounds with anionic N,N bridging ligands 98
 4.2.3 Compounds with miscellaneous other anionic bridging ligands 103

4.3 Non-Paddlewheel Mo₂⁺ Compounds 105
 4.3.1 Mo₂X₈⁺ and Mo₂X₈(H₂O)₂⁺ compounds 105
 4.3.2 [Mo₂X₈H]⁺ compounds 108
 4.3.3 Other aspects of dimolybdenum halogen compounds 109
 4.3.4 M₂X₈ and Mo₂X₈(LL)₂ compounds 111
 4.3.5 Cationic complexes of Mo₂⁺ 130
 4.3.6 Complexes of Mo₂⁺ with macrocyclic, polydentate and chelate ligands 132
 4.3.7 Alkoxide compounds of the types Mo₂(OR)₄L₄ and Mo₂(OR)₂(LL)₂ 134
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Other Aspects of Mo4+ Chemistry</td>
<td>136</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Cleavage of Mo4+ compounds</td>
<td>136</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Redox behavior of Mo4+ compounds</td>
<td>137</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Hydrides and organometallics</td>
<td>142</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Heteronuclear Mo–M compounds</td>
<td>145</td>
</tr>
<tr>
<td>4.4.5</td>
<td>An overview of Mo–Mo bond lengths in Mo4+ compounds</td>
<td>148</td>
</tr>
<tr>
<td>4.5</td>
<td>Higher-order Arrays of Dimolybdenum Units</td>
<td>148</td>
</tr>
<tr>
<td>4.5.1</td>
<td>General concepts</td>
<td>148</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Two linked pairs with carboxylate spectator ligands</td>
<td>154</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Two linked pairs with nonlabile spectator ligands</td>
<td>155</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Squares: four linked pairs</td>
<td>160</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Loops: two pairs doubly linked</td>
<td>162</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Rectangular cyclic quartets</td>
<td>164</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Other structural types</td>
<td>166</td>
</tr>
<tr>
<td>Tungsten Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Multiple Bonds in Ditungsten Compounds</td>
<td>183</td>
</tr>
<tr>
<td>5.2</td>
<td>The W4+ Tetracarboxylates</td>
<td>183</td>
</tr>
<tr>
<td>5.3</td>
<td>W4+ Complexes Containing Anionic Bridging Ligands Other Than Carboxylate</td>
<td>189</td>
</tr>
<tr>
<td>5.4</td>
<td>W4+ Complexes without Bridging Ligands</td>
<td>191</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Compounds coordinated by only anionic ligands</td>
<td>191</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Compounds coordinated by four anionic ligands and four neutral ligands</td>
<td>192</td>
</tr>
<tr>
<td>5.5</td>
<td>Multiple Bonds in Heteronuclear Dimetal Compounds of Molybdenum and Tungsten</td>
<td>196</td>
</tr>
<tr>
<td>5.6</td>
<td>Paddlewheel Compounds with W3+ or W5+ Cores</td>
<td>197</td>
</tr>
<tr>
<td>X\textsubscript{i}M=MX\textsubscript{j} Compounds of Molybdenum and Tungsten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>203</td>
</tr>
<tr>
<td>6.2</td>
<td>Homoleptic X\textsubscript{i}M=MX\textsubscript{j} Compounds</td>
<td>204</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Synthesis and characterization of homoleptic M\textsubscript{i}X\textsubscript{j} compounds</td>
<td>204</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Bonding in M\textsubscript{i}X\textsubscript{j} compounds</td>
<td>208</td>
</tr>
<tr>
<td>6.2.3</td>
<td>X\textsubscript{i}M=MX\textsubscript{j} Compounds as Molecular Precursors to Extended Solids</td>
<td>210</td>
</tr>
<tr>
<td>6.3</td>
<td>M\textsubscript{2}X\textsubscript{j}(NMe\textsubscript{2})\textsubscript{4} and M\textsubscript{2}X\textsubscript{j}(NMe\textsubscript{2})\textsubscript{2} Compounds</td>
<td>210</td>
</tr>
</tbody>
</table>
6.4 Other M$_{X,Y}$, M$_{X,s}$, Y, and Related Compounds 212
 6.4.1 Mo$_{X,s}$(CH$_2$SiMe$_3$)$_4$ compounds 215
 6.4.2 1,2-M$_2$R$_s$(NM$_2$)$_4$ compounds and their derivatives 217

6.5 M$_2$ Complexes: Clusters or Dimers? 218
 6.5.1 Molybdenum and tungsten twelve-electron clusters M$_2$(OR)$_{12}$ 218
 6.5.2 M$_2$X$_s$(OPr$_i$)$_6$ (X = Cl, Br) and Mo$_2$Br$_s$(OPr)$_6$ 220
 6.5.3 W$_s$(p-tolyl)$_s$(OPr)$_{10}$ 221
 6.5.4 W$_s$O(X)(OPr)$_{10}$, (X = Cl or OPr) 221
 6.5.5 K(18-crown-6)Mo$_4$(µ$_4$-H)(OCH$_2$Bu$_t$)$_{12}$ 221
 6.5.6 Linked M$_4$ units containing localized MM triple bonds 222

6.6 M$_{X,L}$, M$_{X,L_2}$ and Related Compounds 223
 6.6.1 Mo$_s$(CH$_2$Ph)$_s$(OPr)$_6$(PMe$_3$) and [Mo$_s$(OR)$_6$] 223
 6.6.2 M$_s$(OR)$_6$L$_2$ compounds and their congeners 224
 6.6.3 Amido-containing compounds 226
 6.6.4 Mo$_s$Br$_s$(CHSiMe$_3$)$_s$(PMe$_3$)$_6$ 228
 6.6.5 Calix[4]arene complexes 228

6.7 Triple Bonds Uniting Five- and Six-Coordinate Metal Atoms 229

6.8 Redox Reactions at the M$_2$$^{6+}$ Unit 230

6.9 Organometallic Chemistry of M$_2$(OR)$_6$ and Related Compounds 232
 6.9.1 Carbonyl adducts and their products 232
 6.9.2 Isocyanide complexes 234
 6.9.3 Reactions with alkynes 234
 6.9.4 Reactions with C≡N bonds 236
 6.9.5 Reactions with C≡C bonds 237
 6.9.6 Reactions with H$_2$ 240
 6.9.7 Reactions with organometallic compounds 241
 6.9.8 (µ$_s$-C,H,R)$_s$W$_s$X$_s$ compounds where R = Me, Pr and X = Cl, Br 241

6.10 Conclusion 242

Technetium Compounds

7.1 Synthesis and Properties of Technetium 251

7.2 Preparation of Dinuclear and Polynuclear Technetium Compounds 252

7.3 Bonds of Order 4 and 3.5 252

7.4 Tc$_2$$^{6+}$ and Tc$_3$$^{5+}$ Carboxylates and Related Species with Bridging Ligands 257
7.5 Bonds of Order 3 261
7.6 Hexanuclear and Octanuclear Technetium Clusters 265

Rhenium Compounds
8.1 The Last Naturally Occurring Element to Be Discovered 271
8.2 Synthesis and Structure of the Octachlorodirhenate(III) Anion 273
8.3 Synthesis and Structure of the Other Octahalodirhenate(III) Anions 278
8.4 Substitution Reactions of the Octahalodirhenate(III) Anions that Proceed with Retention of the Re$_2^{6+}$ Core 280
 8.4.1 Monodentate anionic ligands 280
 8.4.2 The dirhenium(III) carboxylates 282
 8.4.3 Other anionic ligands 292
 8.4.4 Neutral ligands 298
8.5 Dirhenium Compounds with Bonds of Order 3.5 and 3 302
 8.5.1 The first metal–metal triple bond: Re$_2$Cl$_5$[(CH$_2$SCH$_2$CH$_2$SCH$_3$)$_2$ and related species 302
 8.5.2 Simple electron-transfer chemistry involving the octahalodirhenate(III) anions and related species that contain quadruple bonds 303
 8.5.3 Oxidation of [Re$_2$X$_n$]$_2^-$ to the nonahalodirhenate anions [Re$_2$X$_n$]$_n^-$ ($n = 1$ or 2) 307
 8.5.4 Re$_2^{5+}$ and Re$_2^{4+}$ halide complexes that contain phosphine ligands 309
 8.5.5 Other Re$_2^{5+}$ and Re$_2^{4+}$ complexes 359
 8.5.6 Other dirhenium compounds with triple bonds 360
8.6 Dirhenium Compounds with Bonds of Order Less than 3 361
8.7 Cleavage of Re–Re Multiple Bonds by σ-donor and π-acceptor Ligands 361
 8.7.1 σ-Donor ligands 362
 8.7.2 π-Acceptor ligands 363
8.8 Other Types of Multiply Bonded Dirhenium Compounds 363
8.9 Postscript on Recent Developments 364
Ruthenium Compounds

9.1 Introduction 377

9.2 Ru_2^{5+} Compounds
 - 9.2.1 Ru_2^{5+} compounds with O,O'-donor bridging ligands 382
 - 9.2.2 Ru_2^{5+} compounds with N,O-donor bridging ligands 391
 - 9.2.3 Ru_2^{5+} compounds with N,N'-donor bridging ligands 396

9.3 Ru_2^{4+} Compounds
 - 9.3.1 Ru_2^{4+} compounds with O,O'-donor bridging ligands 405
 - 9.3.2 Ru_2^{4+} compounds with N,O-donor bridging ligands 409
 - 9.3.3 Ru_2^{4+} compounds with N,N'-donor bridging ligands 411

9.4 Ru_2^{6+} Compounds
 - 9.4.1 Ru_2^{6+} compounds with O,O'-donor bridging ligands 415
 - 9.4.2 Ru_2^{6+} compounds with N,N'-donor bridging ligands 416

9.5 Compounds with Macrocyclic Ligands 422

9.6 Applications
 - 9.6.1 Catalytic activity 422
 - 9.6.2 Biological importance 423

Osmium Compounds

10.1 Syntheses, Structures and Reactivity of Os_2^{6+} Compounds 431

10.2 Syntheses and Structures of Os_2^{5+} Compounds 437

10.3 Syntheses and Structures of Other Os_2 Compounds 438

10.4 Magnetism, Electronic Structures, and Spectroscopy 439

10.5 Concluding Remarks 444

Iron, Cobalt and Iridium Compounds

11.1 General Remarks 447

11.2 Di-iron Compounds 447

11.3 Dicobalt Compounds
 - 11.3.1 Tetragonal paddlewheel compounds 451
 - 11.3.2 Trigonal paddlewheel compounds 453
 - 11.3.3 Dicobalt compounds with unsupported bonds 454
 - 11.3.4 Compounds with chains of cobalt atoms 455
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4 Di-iridium Compounds</td>
<td>455</td>
</tr>
<tr>
<td>11.4.1 Paddlewheel compounds and related species</td>
<td>455</td>
</tr>
<tr>
<td>11.4.2 Unsupported Ir–Ir bonds</td>
<td>458</td>
</tr>
<tr>
<td>11.4.3 Other species with Ir–Ir bonds</td>
<td>459</td>
</tr>
<tr>
<td>11.4.4 Iridium blues</td>
<td>461</td>
</tr>
<tr>
<td>Rhodium Compounds</td>
<td>465</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>465</td>
</tr>
<tr>
<td>12.2 Dirhodium Tetracarboxylato Compounds</td>
<td>466</td>
</tr>
<tr>
<td>12.2.1 Preparative methods and classification</td>
<td>466</td>
</tr>
<tr>
<td>12.2.2 Structural studies</td>
<td>469</td>
</tr>
<tr>
<td>12.3 Other Dirhodium Compounds Containing Bridging Ligands</td>
<td>493</td>
</tr>
<tr>
<td>12.3.1 Complexes with fewer than four carboxylate bridging groups</td>
<td>493</td>
</tr>
<tr>
<td>12.3.2 Complexes supported by hydroxypyridinato, carboxamidato and other (N, O) donor monoanionic bridging groups</td>
<td>505</td>
</tr>
<tr>
<td>12.3.3 Complexes supported by amidinato and other (N, N) donor bridging groups</td>
<td>512</td>
</tr>
<tr>
<td>12.3.4 Complexes supported by sulfur donor bridging ligands</td>
<td>521</td>
</tr>
<tr>
<td>12.3.5 Complexes supported by phosphine and (P, N) donor bridging ligands</td>
<td>524</td>
</tr>
<tr>
<td>12.3.6 Complexes supported by carbonate, sulfate and phosphate bridging groups</td>
<td>527</td>
</tr>
<tr>
<td>12.4 Dirhodium Compounds with Unsupported Rh–Rh Bonds</td>
<td>528</td>
</tr>
<tr>
<td>12.4.1 The dirhodium(II) aquo ion</td>
<td>528</td>
</tr>
<tr>
<td>12.4.2 The [Rh2(NCR)${10}$]$^{4+}$ cations</td>
<td>529</td>
</tr>
<tr>
<td>12.4.3 Complexes with chelating and macrocyclic nitrogen ligands</td>
<td>530</td>
</tr>
<tr>
<td>12.5 Other Dirhodium Compounds</td>
<td>533</td>
</tr>
<tr>
<td>12.5.1 Complexes with isocyanide ligands</td>
<td>533</td>
</tr>
<tr>
<td>12.5.2 Rhodium blues</td>
<td>536</td>
</tr>
<tr>
<td>12.6 Reactions of Rh$_2$$^{4+}$ Compounds</td>
<td>540</td>
</tr>
<tr>
<td>12.6.1 Oxidation to Rh$_3$$^{3+}$ and Rh$_4$$^{6+}$ species</td>
<td>540</td>
</tr>
<tr>
<td>12.6.2 Cleavage of the Rh–Rh bond</td>
<td>547</td>
</tr>
<tr>
<td>12.7 Applications of Dirhodium Compounds</td>
<td>547</td>
</tr>
<tr>
<td>12.7.1 Catalysis</td>
<td>547</td>
</tr>
<tr>
<td>12.7.2 Supramolecular arrays based on dirhodium building blocks</td>
<td>548</td>
</tr>
<tr>
<td>12.7.3 Biological applications of dirhodium compounds</td>
<td>555</td>
</tr>
<tr>
<td>12.7.4 Photocatalytic reactions</td>
<td>566</td>
</tr>
<tr>
<td>12.7.5 Other applications</td>
<td>567</td>
</tr>
</tbody>
</table>
14.4.4 Complexes containing monoanionic bridging ligands with N,O and N,S donor sets 648
14.4.5 Unsupported Pt–Pt bonds 656
14.4.6 Dinuclear Pt$_{2}^{3+}$ species 657
14.4.7 The platinum blues 658
14.4.6 Other compounds 661

Extended Metal Atom Chains
15.1 Overview 669
15.2 EMACs of Chromium 671
15.3 EMACs of Cobalt 686
15.4 EMACs of Nickel and Copper 694
15.5 EMACs of Ruthenium and Rhodium 701
15.6 Other Metal Atom Chains 702

Physical, Spectroscopic and Theoretical Results
16.1 Structural Correlations 707
 16.1.1 Bond orders and bond lengths 707
 16.1.2 Internal rotation 710
 16.1.3 Axial ligands 712
 16.1.4 Comparison of second and third transition series homologs 713
 16.1.5 Disorder in crystals 715
 16.1.6 Rearrangements of M$_{2}X_{8}$ type molecules 718
 16.1.7 Diamagnetic anisotropy of M–M multiple bonds 720
16.2 Thermodynamics 721
 16.2.1 Thermochemical data 721
 16.2.2 Bond energies 722
16.3 Electronic Structure Calculations 724
 16.3.1 Background 724
 16.3.2 $[M_{2}X_{4}]^{+}$ and $M_{2}X_{4}(PR_{3})_{4}$ species 725
 16.3.3 The $M_{2}(O_{2}CR)_{4}(M = Cr, Mo, W)$ molecules 728
 16.3.4 $M_{2}(O_{2}CR)_{4}R'_{2}(M = Mo, W)$ compounds 729
 16.3.5 Dirhodium species 731
 16.3.6 Diruthenium compounds 732
 16.3.7 $M_{2}X_{6}$ molecules ($M = Mo, W$) 733
 16.3.8 Other calculations 738
16.4 Electronic Spectra
 16.4.1 Details of the δ manifold of states 739
 16.4.2 Observed δ→δ* transitions 744
 16.4.3 Other electronic absorption bands of Mo₂, W₂, Tc₂ and Re₂ species 751
 16.4.4 Spectra of Rh₂, Pt₂, Ru₂ and Os₂ compounds 756
 16.4.5 CD and ORD spectra 758
 16.4.6 Excited state distortions inferred from vibronic structure 760
 16.4.7 Emission spectra and photochemistry 762

16.5 Photoelectron Spectra 766
 16.5.1 Paddlewheel molecules 766
 16.5.2 Other tetragonal molecules 772
 16.5.3 M₂X₆ molecules 773
 16.5.4 Miscellaneous other PES results 774

16.6 Vibrational Spectra 775
 16.6.1 M–M stretching vibrations 775
 16.6.2 M–L stretching vibrations 781

16.7 Other types of Spectra 783
 16.7.1 Electron Paramagnetic Resonance 783
 16.7.2 X-Ray spectra, EXAFS, and XPS 785

Abbreviations 797

Index 811
Multiple Bonds between Metal Atoms
Cotton, F.A.; Murillo, C.A.; Walton, R.A. (Eds.)
2005, XXX, 818 p., Hardcover