CONTENTS

Preface ix

1. Contact Mechanics

Atomic Force Microscopy at Ultrasonic Frequencies 1
Walter Arnold, A. Caron, S. Hirsekom, M. Kopycinska-Müller, U. Rabe, M. Reinstädter

Indentation Size Effect on the Hardness of Zirconia Polycrystals 13
T. Akatsu, S. Numata, M. Yoshida, Y. Shinoda, F. Wakai

Indentation Fracture, Acoustic Emission and Modelling of the Mechanical Properties of Thin Ceramic Coatings 21

Nanoindentation, Nanoscratch and Nanoimpact Testing of Silicon-Based Materials with Nanostructured Surfaces 43
Jinjun Lu, T. Xu, Q. Xue, B.D. Beake

Microstructural Control of Indentation Crack Extension under Externally Applied Stress 57
Robert F. Cook

Instrumented Hardness Test on Alumina Ceramics and Single Crystal with Spherical Indenter 69
Shuji Sakaguchi, K. Hirao, Y. Yamauchi, S. Kanzaki

2. Glass

Controlling the Fragmentation Behavior of Stressed Glass 77
R. Tandon, S.J. Glass

Elasto-Plastic Behavior of Glassy Carbon and Silica Glass by Nanoindentation With Spherical-Tipped Indenter 93
N. Iwashita, M. Swain, J.S. Field

Scratch Test for Evaluation of Surface Damage in Glass 101
S. Yoshida, T. Hayashi, T. Fukuhara, K. Soeda, J. Matsuoka, N. Soga

Shear-Driven Damage and Internal Friction in Indentation Loading of a Glass-Ceramic 113
Anthony Fischer-Cripps

Indentation and Scratching of Glass: Load, Composition, Environment and Temperature Effects 121
Jean-Christophe Sangleboeuf, Tanguy Rouxel
vi Contents

Effects of Tin on the Physical Properties and Crack Growth in Soda-Lime-Silica Float Glass 135
Matthew H. Krohn, John R. Hellmann, Carlo G. Pantano, Nathan P. Lower, and Richard K. Brow

Indentation Size Effects for Glasses: Yes, There is a Fracture 149
George D. Quinn

3. Fracture of Nano-Scale Materials

Slow Crack Propagation in Ceramics at the Nano- and Micro-scale: Effect of the Microstructure 173
J. Chevalier, G. Fantozzi

Toughening and Strengthening Mechanisms in Nanocomposites based on Dislocation Activity 191
Hideo Awaji, S-M Choi

4. Composites

Creep Behavior and Mechanisms for CMCs with Continuous Ceramic Fibers 203
Jean-Louis Chermant, Gaëlle Farizy, Guillaume Boitier, Séverine Darzens, Jean Vicens, and Jean-Christophe Sangleboeuf

Strain Accumulation and Damage Evolution during Creep of SiC/SiC Composites 221
B. Wilshire, H. Burt

Modeling Multilayer Damage in Cross-ply Ceramics Matrix Composites 233
M. Kashtalyan, H.W. Chandler

Quantification of Toughness Increase Due to Metal Particles in Glass Matrix Composites 245
M. Kotoul, A.R. Boccaccini, I. Dlouhy

Fracture Resistance of Hybrid Glass Matrix Composite and its Degradation Due to Thermal Aging and Thermal Shock 263
I. Dlouhy, Z. Chlup, S. Atiq, A.R. Boccaccini

Creep Investigation on SiC–SiBC Composites 275
Gaëlle Farizy, Jean-Louis Chermant, Jean Vicens, Jean-Christoph Sanglebeuf

Fracture Toughness of BaTiO3 – MgO Composites Sintered by Spark Plasma Sintering 287
S. Rattanachan, Y. Miyashita
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Ferroelectric Materials</td>
</tr>
<tr>
<td>Modeling of Fracture in Ferroelastic Ceramics</td>
</tr>
<tr>
<td>C.M. Landis</td>
</tr>
<tr>
<td>Strength and Reliability of Lead Zirconate Titanate Ceramics</td>
</tr>
<tr>
<td>C.S. Watson</td>
</tr>
<tr>
<td>8. Reliability Prediction, Standardization and Design</td>
</tr>
<tr>
<td>Standard Reference Material 2100: Fracture Toughness of Ceramics</td>
</tr>
<tr>
<td>G.D. Quinn, K. Xu, R. Gettings, J.A. Salem, J.J. Swab</td>
</tr>
<tr>
<td>Measuring the Real Fracture toughness of Ceramics – ASTM C1421</td>
</tr>
<tr>
<td>J.A. Salem, G.D. Quinn, M.G. Jenkins</td>
</tr>
<tr>
<td>Predicting the Reliability of Brittle Material Structures Subjected to</td>
</tr>
<tr>
<td>Transient Proof Test and Service Loading</td>
</tr>
<tr>
<td>N.N. Nemeth, O.M. Jadaan, T. Palfi, and E.H. Baker</td>
</tr>
<tr>
<td>Estimation and Stimulation of Slow Crack Growth Parameters from</td>
</tr>
<tr>
<td>Constant Stress Rate Data</td>
</tr>
<tr>
<td>J.A. Salem, A.S. Weaver</td>
</tr>
<tr>
<td>On Integrity of Flexible Display</td>
</tr>
<tr>
<td>P.C.P. Bouten</td>
</tr>
<tr>
<td>Fracture of Conductive Cracks in Poled and Depoled PZT-4 Ceramics</td>
</tr>
<tr>
<td>Tong-Yi Zhang</td>
</tr>
<tr>
<td>Increasing Resistance to Low Temperature Ageing Degradation of Y-TZP</td>
</tr>
<tr>
<td>by Surface Modification</td>
</tr>
<tr>
<td>A. Feder, P. Morcillo, M.J. Anglada</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>

Particle Impact Damage and Point Load-Induced Fracture Behavior in Zirconia Plasma Spray Coating Film

Mode I, Mode II, and Mixed-Mode Fracture of Plasma-Sprayed Thermal Barrier Coating at Ambient and Elevated Temperatures
Sung R. Choi, D. Zhu, R. Miller
Fracture Mechanics of Ceramics
Active Materials, Nanoscale Materials, Composites,
Glass, and Fundamentals
Bradt, R.C.; Munz, D.; Sakai, M.; White, K.W. (Eds.)
2005, IX, 636 p., Hardcover
ISBN: 978-0-387-24134-0