Contents

Series preface .. vii
Preface .. ix

Part I Modeling of mechanical systems

1 Introductory examples and problems 3
 1.1 Rigid body systems .. 4
 1.2 Manipulators and multi-body systems 6
 1.3 Constrained mechanical systems 8
 1.4 Bibliographical notes 10

2 Linear and multilinear algebra 15
 2.1 Basic concepts and notation 15
 2.1.1 Sets and set notation 16
 2.1.2 Number systems and their properties 16
 2.1.3 Maps ... 17
 2.1.4 Relations .. 19
 2.1.5 Sequences and permutations 19
 2.1.6 Zorn’s Lemma 20
 2.2 Vector spaces .. 21
 2.2.1 Basic definitions and concepts 21
 2.2.2 Linear maps .. 24
 2.2.3 Linear maps and matrices 26
 2.2.4 Invariant subspaces, eigenvalues, and eigenvectors 29
 2.2.5 Dual spaces .. 30
 2.3 Inner products and bilinear maps 33
 2.3.1 Inner products and norms 33
 2.3.2 Linear maps on inner product spaces 35
 2.3.3 Bilinear maps 36
2.3.4 Linear maps associated with bilinear maps 39
2.4 Tensors .. 40
2.4.1 Basic definitions 41
2.4.2 Representations of tensors in bases 42
2.4.3 Behavior of tensors under linear maps 43
2.5 Convexity ... 44

3 Differential geometry 49
3.1 The prelude to differential geometry 50
3.1.1 Topology ... 51
3.1.2 Calculus in \mathbb{R}^n 56
3.1.3 Convergence of sequences of maps 59
3.2 Manifolds, maps, and submanifolds 60
3.2.1 Charts, atlases, and differentiable structures 60
3.2.2 Maps between manifolds 66
3.2.3 Submanifolds .. 68
3.3 Tangent bundles and more about maps 70
3.3.1 The tangent bundle 70
3.3.2 More about maps 73
3.4 Vector bundles .. 77
3.4.1 Vector bundles .. 78
3.4.2 Tensor bundles 83
3.5 Vector fields .. 84
3.5.1 Vector fields as differential operators 85
3.5.2 Vector fields and ordinary differential equations 89
3.5.3 Lifts of vector fields to the tangent bundle 94
3.6 Tensor fields .. 95
3.6.1 Covector fields 96
3.6.2 General tensor fields 98
3.7 Distributions and codistributions 104
3.7.1 Definitions and basic properties 104
3.7.2 Integrable distributions 105
3.7.3 The Orbit Theorem for distributions 108
3.7.4 Codistributions .. 110
3.8 Affine differential geometry 111
3.8.1 Definitions and general concepts 112
3.8.2 The Levi-Civita affine connection 114
3.8.3 Coordinate formulae 116
3.8.4 The symmetric product 118
3.9 Advanced topics in differential geometry 119
3.9.1 The differentiable structure of an immersed submanifold 120
3.9.2 Comments on smoothness, in particular analyticity 121
3.9.3 Properties of generalized subbundles 123
3.9.4 An alternative notion of distribution 125
3.9.5 Fiber bundles .. 130
Contents

3.9.6 Additional topics in affine differential geometry

4 Simple mechanical control systems
 4.1 The configuration manifold
 4.1.1 Interconnected mechanical systems
 4.1.2 Finding the configuration manifold
 4.1.3 Choosing coordinates
 4.1.4 The forward kinematic map
 4.1.5 The tangent bundle of the configuration manifold
 4.2 The kinetic energy metric
 4.2.1 Rigid bodies
 4.2.2 The kinetic energy of a single rigid body
 4.2.3 From kinetic energy to a Riemannian metric
 4.3 The Euler–Lagrange equations
 4.3.1 A problem in the calculus of variations
 4.3.2 Necessary conditions for minimization—the Euler–Lagrange equations
 4.3.3 The Euler–Lagrange equations and changes of coordinate
 4.3.4 The Euler–Lagrange equations on a Riemannian manifold
 4.3.5 Physical interpretations
 4.4 Forces
 4.4.1 From rigid body forces and torques to Lagrangian forces
 4.4.2 Definitions and examples of forces in Lagrangian mechanics
 4.4.3 The Lagrange–d’Alembert Principle
 4.4.4 Potential forces
 4.4.5 Dissipative forces
 4.5 Nonholonomic constraints
 4.5.1 From rigid body constraints to a distribution on Q
 4.5.2 Definitions and basic properties
 4.5.3 The Euler–Lagrange equations in the presence of constraints
 4.5.4 Simple mechanical systems with constraints
 4.5.5 The constrained connection
 4.5.6 The Poincaré representation of the equations of motion
 4.5.7 Special features of holonomic constraints
 4.6 Simple mechanical control systems and their representations
 4.6.1 Control-affine systems
 4.6.2 Classes of simple mechanical control systems
 4.6.3 Global representations of equations of motion
 4.6.4 Local representations of equations of motion
 4.6.5 Linear mechanical control systems
 4.6.6 Alternative formulations
5 Lie groups, systems on groups, and symmetries 247
 5.1 Rigid body kinematics .. 248
 5.1.1 Rigid body transformations 249
 5.1.2 Infinitesimal rigid body transformations 252
 5.1.3 Rigid body transformations as exponentials of twists ... 254
 5.1.4 Coordinate systems on the group of rigid displacements 255
 5.2 Lie groups and Lie algebras 258
 5.2.1 Groups .. 258
 5.2.2 From one-parameter subgroups to matrix Lie algebras ... 261
 5.2.3 Lie algebras ... 263
 5.2.4 The Lie algebra of a Lie group 265
 5.2.5 The Lie algebra of a matrix Lie group 268
 5.3 Metrics, connections, and systems on Lie groups 271
 5.3.1 Invariant metrics and connections 271
 5.3.2 Simple mechanical control systems on Lie groups 275
 5.3.3 Planar and three-dimensional rigid bodies as systems
 on Lie groups .. 277
 5.4 Group actions, isometries, and symmetries 283
 5.4.1 Group actions and infinitesimal generators 283
 5.4.2 Isometries .. 288
 5.4.3 Symmetries and conservation laws 290
 5.4.4 Examples of mechanical systems with symmetries 293
 5.5 Principal bundles and reduction 296
 5.5.1 Principal fiber bundles 297
 5.5.2 Reduction by an infinitesimal isometry 298

Part II Analysis of mechanical control systems

6 Stability ... 313
 6.1 An overview of stability theory for dynamical systems 315
 6.1.1 Stability notions 315
 6.1.2 Linearization and linear stability analysis 317
 6.1.3 Lyapunov Stability Criteria and LaSalle Invariance
 Principle .. 319
 6.1.4 Elements of Morse theory 325
 6.1.5 Exponential convergence 327
 6.1.6 Quadratic functions 329
 6.2 Stability analysis for equilibrium configurations of mechanical
 systems .. 331
 6.2.1 Linearization of simple mechanical systems 331
 6.2.2 Linear stability analysis for unforced systems 334
 6.2.3 Linear stability analysis for systems subject to
 Rayleigh dissipation .. 336
 6.2.4 Lyapunov stability analysis 340
9 **Perturbation analysis** .. 441
 9.1 An overview of averaging theory for oscillatory control systems 442
 9.1.1 Iterated integrals and their averages 443
 9.1.2 Norms for objects defined on complex neighborhoods 446
 9.1.3 The variation of constants formula 447
 9.1.4 First-order averaging ... 451
 9.1.5 Averaging of systems subject to oscillatory inputs 454
 9.1.6 Series expansion results for averaging 459
 9.2 Averaging of affine connection systems subject to oscillatory controls ... 463
 9.2.1 The homogeneity properties of affine connection control systems ... 463
 9.2.2 Flows for homogeneous vector fields 466
 9.2.3 Averaging analysis ... 466
 9.2.4 Simple mechanical control systems with potential control forces ... 471
 9.3 A series expansion for a controlled trajectory from rest 473

Part III A sampling of design methodologies

10 **Linear and nonlinear potential shaping for stabilization** 481
 10.1 An overview of stabilization .. 482
 10.1.1 Defining the problem .. 483
 10.1.2 Stabilization using linearization 485
 10.1.3 The gaps in linear stabilization theory 487
 10.1.4 Control-Lyapunov functions 489
 10.1.5 Lyapunov-based dissipative control 490
 10.2 Stabilization problems for mechanical systems 493
 10.3 Stabilization using linear potential shaping 495
 10.3.1 Linear PD control .. 495
 10.3.2 Stabilization using linear PD control 497
 10.3.3 Implementing linear control laws on nonlinear systems 501
 10.3.4 Application to the two-link manipulator 505
 10.4 Stabilization using nonlinear potential shaping 507
 10.4.1 Nonlinear PD control and potential energy shaping 507
 10.4.2 Stabilization using nonlinear PD control 509
 10.4.3 A mathematical example 515
 10.5 Notes on stabilization of mechanical systems 515
 10.5.1 General linear techniques 516
 10.5.2 Feedback linearization and partial feedback linearization 517
 10.5.3 Backstepping .. 517
 10.5.4 Passivity-based methods 518
 10.5.5 Sliding mode control ... 518
 10.5.6 Total energy shaping methods 519
11 Stabilization and tracking for fully actuated systems

11.1 Configuration stabilization for fully actuated systems

11.1.1 Stabilization via configuration error functions

11.1.2 PD control for a point mass in three-dimensional Euclidean space

11.1.3 PD control for the spherical pendulum

11.2 Trajectory tracking for fully actuated systems

11.2.1 Time-dependent feedback control and the tracking problem

11.2.2 Tracking error functions

11.2.3 Transport maps

11.2.4 Velocity error curves

11.2.5 Proportional-derivative and feedforward control

11.3 Examples illustrating trajectory tracking results

11.3.1 PD and feedforward control for a point mass in three-dimensional Euclidean space

11.3.2 PD and feedforward control for the spherical pendulum

11.4 Stabilization and tracking on Lie groups

11.4.1 PD control on Lie groups

11.4.2 PD and feedforward control on Lie groups

11.4.3 The attitude tracking problem for a fully actuated rigid body fixed at a point

12 Stabilization and tracking using oscillatory controls

12.1 The design of oscillatory controls

12.1.1 The averaging operator

12.1.2 Inverting the averaging operator

12.2 Stabilization via oscillatory controls

12.2.1 Stabilization with the controllability assumption

12.2.2 Stabilization without the controllability assumption

12.3 Tracking via oscillatory controls

13 Motion planning for underactuated systems

13.1 Motion planning for driftless systems

13.1.1 Definitions

13.1.2 A brief literature survey of synthesis methods

13.2 Motion planning for mechanical systems

13.2.1 Definitions

13.2.2 Kinematically controllable systems

13.2.3 Maximally reducible systems

13.3 Motion planning for two simple systems

13.3.1 Motion planning for the planar rigid body

13.3.2 Motion planning for the robotic leg
Contents

13.4 Motion planning for the snakeboard .. 598
13.4.1 Modeling ... 598
13.4.2 Motion planning on $\mathbb{SE}(2)$ for the snakeboard 605
13.4.3 Simulations ... 612

A Time-dependent vector fields ... 619

A.1 Measure and integration ... 619
A.1.1 General measure theory .. 619
A.1.2 Lebesgue measure ... 621
A.1.3 Lebesgue integration .. 622
A.2 Vector fields with measurable time-dependence 624
A.2.1 Carathéodory sections of vector bundles and bundle maps 624
A.2.2 The time-dependent Flow Box Theorem .. 625

B Some proofs ... 627

B.1 Proof of Theorem 4.38 ... 627
B.2 Proof of Theorem 7.36 .. 629
B.3 Proof of Lemma 8.4 .. 635
B.4 Proof of Theorem 9.38 .. 638
B.5 Proof of Theorem 11.19 .. 648
B.6 Proof of Theorem 11.29 .. 652
B.7 Proof of Proposition 12.9 .. 654

References ... 657

Symbol index ... 689

Subject index ... 705
Geometric Control of Mechanical Systems
Modeling, Analysis, and Design for Simple Mechanical Control Systems
Bullo, F.; Lewis, A.D.
2005, XXIV, 727 p., Hardcover