Contents

Cochlear signal processing

Mary Ann Cheatham
- Nonlinearities at the apex of the cochlea: Implications for auditory perception

Marcel van der Heijden and Philip X. Joris
- Reconstructing the traveling wave from auditory nerve responses

Alberto Lopez-Najera, Ray Meddis, and Enrique A. Lopez-Poveda
- A computational algorithm for computing cochlear frequency selectivity: Further studies

Roy D. Patterson, Masashi Unoki, and Toshio Irino
- Comparison of the compressive-gammachirp and double-roex auditory filters

Mary Florentine, Søren Buus, and Mindy Rosenberg
- Reaction-time data support the existence of Softness Imperception in cochlear hearing loss

Michael G. Heinz, Danilo Scepanovic, John Issa, Murray B. Sachs, and Eric D. Young
- Normal and impaired level encoding: Effects of noise-induced hearing loss on auditory-nerve responses

Stephen T. Neely, Kim S. Schairer, and Walt Jesteadt
- Estimates of cochlear compression from measurements of loudness growth

Christopher J. Plack, Catherine G. O’Hanlon, and Vit Drga
- Additivity of masking and auditory compression

Magdalena Wojtczak and Neal F. Viemeister
- Psychophysical response growth under suppression
Brainstem signal processing

David W. Smith, E. Christopher Kirk, and Emily Buss
The function(s) of the medial olivocochlear efferent system in hearing 75

Katuhiro Maki and Masato Akagi
A computational model of cochlear nucleus neurons 84

Kazuhito Ito and Masato Akagi
Study on improving regularity of neural phase locking in single neurons of AVCN via a computational model 91

Dries H. Louage, Marcel van der Heijden, and Philip X. Joris
Fibers in the trapezoid body show enhanced synchronization to broadband noise when compared to auditory nerve fibers 100

Pitch

Leonardo Cedolin and Bertrand Delgutte
Representations of the pitch of complex tones in the auditory nerve 107

Lutz Wiegrebe, Alexandra Stein, and Ray Meddis
Coding of pitch and amplitude modulation in the auditory brainstem: One common mechanism? 117

Andrew J. Oxenham, Joshua G. Bernstein, and Christophe Micheyl
Pitch perception of complex tones within and across ears and frequency regions 126

Laurent Demany, Gaspard Montandon, and Catherine Semal
Internal noise and memory for pitch 136

André Rupp, Stefan Uppenkamp, Jen Bailes, Alexander Gutschalk, and Roy D. Patterson
Time constants in temporal pitch extraction: A comparison of psychophysical and neuromagnetic data 145

Bernd Lütkenhöner, Christian Borgmann, Katrin Krumbholz, Stefan Seither, and Annemarie Seither-Preisler
Auditory processing at the lower limit of pitch studied by magnetoencephalography 154

Frequency modulation

Günter Ehret, Steffen R. Hage, Marina Egorova, and Birgit A. Müller
Auditory maps in the midbrain: The inferior colliculus 162
Contents

Craig Atencio, Fabrizio Strata, David Blake, Ben Bonham, Benoit Godey, Michael Merzenich, Christoph Schreiner, and Steven Cheung
Representation of frequency modulation in the primary auditory cortex of New World monkeys

Pierre L. Divenyi
Frequency change velocity and acceleration detector: A bird or a red herring?

Robert P. Carlyon, Christophe Micheyl, and John Deeks
Coding of FM and the continuity illusion

Streamning

Makio Kashino and Minae Okada
The role of spectral change detectors in sequential grouping of tones

Christophe Micheyl, Robert P. Carlyon, Rhodri Cusack, and Brian C.J. Moore
Performance measures of auditory organization

Nicolas Grimault, Sid P. Bacon, and Christophe Micheyl
Auditory streaming without spectral cues in hearing-impaired subjects

Amplitude modulation

Neal F. Viemeister, Mark A. Stellmack, and Andrew J. Byrne
The role of temporal structure in envelope processing

Christian Füllgrabe, Laurent Demany, and Christian Lorenzi
Detecting changes in amplitude-modulation frequency: A test of the concept of excitation pattern in the temporal-envelope domain

Frederick Gallun, Ervin R. Hafter, and Anne-Marie Bonnel
Modeling the role of duration in intensity increment detection

Stanley Sheft and William A. Yost
Minimum integration times for processing of amplitude modulation

Responses to complex sounds

Ellen Covey and Paul A. Faure
Neural mechanisms for analyzing temporal patterns in echolocating bats
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diana B. Geissler and Günter Ehret</td>
<td>258</td>
</tr>
<tr>
<td>Time-critical frequency integration of complex communication sounds</td>
<td></td>
</tr>
<tr>
<td>in the auditory cortex of the mouse</td>
<td></td>
</tr>
<tr>
<td>Israel Nelken, Nachum Ulanovsky, Liora Las, Omer Bar-Yosef,</td>
<td>265</td>
</tr>
<tr>
<td>Michael Anderson, Gal Chechik, Naftali Tishby, and Eric D. Young</td>
<td></td>
</tr>
<tr>
<td>Transformation of stimulus representations in the ascending auditory</td>
<td></td>
</tr>
<tr>
<td>system</td>
<td></td>
</tr>
<tr>
<td>Dennis L. Barbour and Xiaqin Wang</td>
<td>275</td>
</tr>
<tr>
<td>AM and FM coherence sensitivity in the auditory cortex as a potential</td>
<td></td>
</tr>
<tr>
<td>neural mechanism for sound segregation</td>
<td></td>
</tr>
<tr>
<td>Speech</td>
<td></td>
</tr>
<tr>
<td>Fan-Gang Zeng, Kaibao Nie, Ginger Stickney, and Ying-Yee Kong</td>
<td>283</td>
</tr>
<tr>
<td>Auditory perception with slowly-varying amplitude and frequency</td>
<td></td>
</tr>
<tr>
<td>modulations</td>
<td></td>
</tr>
<tr>
<td>Steven J. Eliades and Xiaqin Wang</td>
<td>292</td>
</tr>
<tr>
<td>The role of auditory-vocal interaction in hearing</td>
<td></td>
</tr>
<tr>
<td>Ingrid Johnsrude, Matt Davis, and Alexis Hervais-Adelman</td>
<td>299</td>
</tr>
<tr>
<td>From sound to meaning: Hierarchical processing in speech comprehension</td>
<td></td>
</tr>
<tr>
<td>John F. Culling and Julia S. Porter</td>
<td>307</td>
</tr>
<tr>
<td>Effects of differences in the accent and gender of competing voices</td>
<td></td>
</tr>
<tr>
<td>on speech segregation</td>
<td></td>
</tr>
<tr>
<td>Jont B. Allen</td>
<td>314</td>
</tr>
<tr>
<td>The Articulation Index is a Shannon channel capacity</td>
<td></td>
</tr>
<tr>
<td>Comodulation masking release</td>
<td></td>
</tr>
<tr>
<td>Ian M. Winter, Veronika Neuert, and Jesko L. Verhey</td>
<td>321</td>
</tr>
<tr>
<td>Comodulation masking release and the role of wideband inhibition in</td>
<td></td>
</tr>
<tr>
<td>the cochlear nucleus</td>
<td></td>
</tr>
<tr>
<td>Georg M. Klump and Sonja B. Hofer</td>
<td>328</td>
</tr>
<tr>
<td>The relevance of rate and time cues for CMR in starling auditory</td>
<td></td>
</tr>
<tr>
<td>forebrain neurons</td>
<td></td>
</tr>
<tr>
<td>Torsten Dau, Stephan D. Ewert, and Andrew J. Oxenham</td>
<td>335</td>
</tr>
<tr>
<td>Effects of concurrent and sequential streaming in comodulation masking</td>
<td></td>
</tr>
<tr>
<td>release</td>
<td></td>
</tr>
</tbody>
</table>
Binaural hearing

Ray Meddis, Christian Sumner, and Susan Shore 344
Effects of contralateral sound stimulation on forward masking in the guinea pig

H. Steven Colburn, Yi Zhou, and Vasant Dasika 355
Inhibition in models of coincidence detection

Birger Kollmeier and Helmut Riedel 362
What can auditory evoked potentials tell us about binaural processing in humans?

Trevor M. Shackleton and Alan R. Palmer 370
Sensitivity to changes in interaural time difference and interaural correlation in the inferior colliculus

Leslie R. Bernstein and Constantine Trahiotis 377
Processing of interaural temporal disparities with both "transposed" and conventional stimuli

D. Wesley Grantham, Daniel H. Ashmead, and Todd A. Ricketts 390
Sound localization in the frontal horizontal plane by post-lingually deafened adults fitted with bilateral cochlear implants

Steven van de Par, Armin Kohlrausch, Jeroen Breebaart, and Martin McKinney 398
Discrimination of different temporal envelope structures of diotic and dichotic target signals within diotic wide-band noise

Courtney C. Lane, Norbert Kopco, Bertrand Delgutte, Barbara G. Shinn-Cunningham, and H. Steven Colburn 405
A cat’s cocktail party: Psychophysical, neurophysiological, and computational studies of spatial release from masking

Brad Rakerd and William M. Hartmann 414
Localization of noise in a reverberant environment

Anthony J. Watkins 423
Listening in real-room reverberation: Effects of extrinsic context

Daniel J. Tollin, Micheal L. Dent, and Tom C.T. Yin 429
Psychophysical and physiological studies of the precedence effect and echo threshold in the behaving cat
Michael A. Akeroyd
Some similarities between the temporal resolution and the temporal integration of interaural time differences
436

Caroline Witton, Gary G.R. Green, and G. Bruce Henning
Binaural “sluggishness” as a function of stimulus bandwidth
443

Temporal coding

Peter Heil and Heinrich Neubauer
Auditory thresholds re-visited
454

Marjorie Leek, Robert Dooling, Otto Gleich, and Micheal L. Dent
Discrimination of temporal fine structure by birds and mammals
471

Philip X. Joris, Marcel van der Heijden, Dries H. Louage, Bram Van de Sande, and Cindy Van Kerckhoven
Dependence of binaural and cochlear “best delays” on characteristic frequency
478

Mounya Elhilali, David J. Klein, Jonathan B. Fritz, Jonathan Z. Simon, and Shihab A. Shamma
The enigma of cortical responses: Slow yet precise
485

Plasticity

Jean-Marc Edeline
Learning-induced sensory plasticity: Rate code, temporal code, or both?
495

Katriona M. MacLeod and Catherine E. Carr
Synaptic dynamics and intensity coding in the cochlear nucleus
501

Beverly A. Wright and Matthew B. Fitzgerald
Learning and generalization on five basic auditory discrimination tasks as assessed by threshold changes
510

Subject index

Author index
Auditory Signal Processing
Physiology, Psychoacoustics, and Models
Pressnitzer, D.; de Cheveigne, A.; McAdams, S.; Collet, L. (Eds.)
2005, XIV, 524 p., Hardcover
ISBN: 978-0-387-21915-8