Johannes A. Buchmann

Corrections to “Introduction to Cryptography, Second Edition”

April 11, 2005

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest
In the line before Example 1.7.4. replace \(a_i \) by \(\alpha_i \).

Proof of Theorem 2.9.5: Theorem 2.9.2 instead of Theorem 2.9.3 (Twice)

Proof of Corollary 2.11.3: Theorem 2.9.2 instead of Theorem 2.9.3.

Lemma 2.19.2: Use a “plain” \(K \).

At the bottom the sequence reads \(c_1, c_2, \ldots, c_n \). The last entry should be \(c_u \) instead.

Equation (3.3): replace \(z_{i-j} \) by \(s_{i-j} \).

above Example 3.9.3, the \(p_i \) should be \(c_i \).

Figure 5.1: replace “Expansionsfunktion” by “expansion function”, “S-Boxen” by “S-boxes” and \(f(R, K) \) by \(f(K, R) \).

In Table 5.3, description of the function \(P \) the positions for 10 and 20 must be switched.

Replace \(f(R_0, K_1) \) by \(f(K_1, R_0) \).

4th last and 2nd last lines of Section 5.3: In both strings, the 3rd and 16th bits (from the left) should be changed (that’s a result of the problem with the P-table).

Line 15: In the definition of SHA-1 we have

\[
C = S^{30}(B)
\]
instead of

\[C = S^{36}(B). \]

p. 279 Exercise 12.9.5: In the ElGamal signature scheme use the prime number \(p \) and the primitive root \(g \mod p \). Suppose that \(p \equiv 1 \mod 4 \) and that \(g \) has only small prime factors. Let \(A \) be Alice's public key.

1. Show that a solution \(z \) of the congruence \(A^q = g^{qz} \mod p \) can be found efficiently.

2. Let \(x \) be a document and let \(h \) be its hash value. Prove that \((q, (p - 3)(h - qz)/2) \) is a valid signature of \(x \).

p. 295 The correct formula for the determinant of the Vandermonde matrix is

\[
\det U = \prod_{1 \leq i < j \leq \ell} (x_j - x_i).
\]
Introduction to Cryptography
Buchmann, J.
2004, XVI, 338 p., Hardcover