In the line before Example 1.7.4. replace \(a_i \) by \(\alpha_i \).

Last line of Definition 2.1.1: Delete “the” after “divides”.

Proof of Theorem 2.9.5: Theorem 2.9.2 instead of Theorem 2.9.3 (Twice)

Proof of Corollary 2.11.3: Theorem 2.9.2 instead of Theorem 2.9.3.

Lemma 2.19.2: Use a “plain” \(K \).

Exercise 2.22.12: \(d_i \) is missing in the sum.

At the bottom the sequence reads \(c_1, c_2, \ldots, c_n \). The last entry should be \(c_u \) instead.

Equation (3.3): replace \(z_{i-j} \) by \(s_{i-j} \).

Above example 3.9.3, the \(p_i \) should be \(c_i \).

The name is Blaise de Vigenère.

The determinant of \(A \) is even, and so the cipher is not allowable since it is not relatively prime to \(m = 26 \). Replace FUSS replaced by FOOT.

Pr(\(a \)) instead of \(P(\(a \)) \).

Line 2 of Definition 4.2.2: The “end quote” should be placed after ‘occurs’ (and not after the \(B \)).

Line 1 of Example 4.2.3: Delete “probability of the”.

Line 9 from below: \(m \) should be replaced by \(p \) (3 times).

Figure 5.1: replace “Expansionsfunktion” by “expansion function”, “S-Boxen” by “S-boxes” and \(f(\(R, K \)) \) by \(f(\(K, R \)) \).

In Table 5.3, description of the function \(P \) the positions for 10 and 20 must be switched.

Replace \(f(\(R_0, K_1 \)) \) by \(f(\(K_1, R_0 \)) \).

4th last and 2nd last lines of Section 5.3: In both strings, the 3rd and 16th bits (from the left) should be changed (that’s a result of the problem with the P-table).

Those arrays have “four” rows ...

Line 3 of Example 7.2.1: Read gcd(3, 220) = 1. p. 145, line 3 of Example 7.2.5:

Example 8.3.5: 119 should be replaced by 110 (twice), and 26 by 165.

Line 8 of 2nd paragraph: 1023 instead of 1024.

Line 7 of Section 8.5.4: Read \(K = A^b \mod p \).

Last line of first paragraph: Read \(g^c \equiv g^{ab} \mod p \).

Line 1: \(b \in \{0, 1, \ldots p-2\} \).

In equation (10.4) \(a + \) is missing:

\[
p^{-1} x = x_0 p^{-1} + p^e(x_1 + x_2 p + \ldots + x_{e-1} p^{e-2}). \tag{0.1}
\]

statt

\[
p^{-1} x = x_0 p^{-1} + p^e(x_1 + x_2 p + \ldots x_{e-1} p^{e-2}). \tag{0.2}
\]

In the definition of SHA-1 we have

\[
C = S^{30}(B)
\]
instead of
\[C = S^{36}(B). \]

p. 279 Exercise 12.9.5: In the ElGamal signature scheme use the prime number \(p \) and the primitive root \(g \mod p \). Suppose that \(p \equiv 1 \pmod 4 \) and that \(g \) has only small prime factors. Let \(A \) be Alice's public key.

1. Show that a solution \(z \) of the congruence \(A^q = g^z \mod p \) can be found efficiently.
2. Let \(x \) be a document and let \(h \) be its hash value. Prove that \((q, (p - 3)(h - qz)/2) \) is a valid signature of \(x \).

p. 295 The correct formula for the determinant of the Vandermonde matrix is

\[
\det U = \prod_{1 \leq i < j \leq \ell} (x_j - x_i).
\]
Introduction to Cryptography
Buchmann, J.
2004, XVI, 338 p., Hardcover