Corrections to “Introduction to Cryptography, Second Edition”

April 11, 2005
p. 10 In the line before Example 1.7.4. replace \(a_i\) by \(\alpha_i\).
p. 29 last line of Definition 2.1.1: Delete “the” after “divides”.
p. 42 Proof of Theorem 2.9.5: Theorem 2.9.2 instead of Theorem 2.9.3
(Twice)
p. 45 Proof of Corollary 2.11.3: Theorem 2.9.2 instead of Theorem 2.9.3.
p. 59 Lemma 2.19.2: Use a “plain” \(K\).
p. 68 Exercise 2.22.12: \(d_i\) is missing in the sum.
p. 88 At the bottom the sequence reads \(c_1, c_2, \ldots, c_n\). The last entry should be \(c_u\) instead.
p. 93 Equation (3.3): replace \(z_{i-j}\) by \(s_{i-j}\).
p. 95 above example 3.9.3, the \(p_i\) should be \(c_i\).
p. 103 line 2 of 3.13: The name is Blaise de Vigenère.
p. 104/105 Example 3.14.1: The determinant of \(A\) is even, and so the cipher is not allowable since it is not relatively prime to \(m = 26\). Replace FUSS replaced by FOOT.
p. 117 line 2: \(\Pr(a)\) instead of \(P(a)\).
p. 117 p. 105, line 2 of Definition 4.2.2: The “end quote” should be placed after ‘occurs’ (and not after the \(B\)).
p. 118 line 1 of Example 4.2.3: Delete “probability of the”.
p. 123 line 9 from below: \(m\) should be replaced by \(p\) (3 times).
p. 131 Figure 5.1: replace “Expansionsfunktion” by “expansion function”, “S-Boxen” by “S-boxes” and \(f(R, K)\) by \(f(K, R)\).
p. 132 In Table 5.3, description of the function \(P\) the positions for 10 and 20 must be switched.
p. 136 Replace \(f(R_0, K_1)\) by \(f(K_1, R_0)\).
p. 136 4th last and 2nd last lines of Section 5.3: In both strings, the 3rd and 16th bits (from the left) should be changed (that’s a result of the problem with the P-table).
p. 140 line 9: Those arrays have “four” rows …

p. 168 line 3 of Example 7.2.1: Read \(\gcd(3, 220) = 1\). p. 145, line 3 of Example 7.2.5:

p. 171 Example 8.3.5: 119 should be replaced by 110 (twice), and 26 by 165.
p. 171 line 8 of 2nd paragraph: 1023 instead of 1024.
p. 189 line 7 of Section 8.5.4: Read \(K = A^b \mod p\).
p. 190 last line of first paragraph: Read \(g^e \equiv g^{ah} \mod p\).
p. 192 line 1: \(b \in \{0, 1, \ldots, p-2\}\).

p. 223 In equation (10.4) \(a + i\) is missing:

\[
p^{e-1}x = x_0p^{e-1} + p^e(x_1 + x_2p + \ldots + x_{e-1}p^{e-2}). \tag{0.1}
\]

statt

\[
p^{e-1}x = x_0p^{e-1} + p^e(x_1 + x_2p + \ldots x_{e-1}p^{e-2}). \tag{0.2}
\]

p. 244 Line 15: In the definition of SHA-1 we have:

\[
C = S^{30}(B)
\]
instead of

\[C = S^{36}(B). \]

p. 279 Exercise 12.9.5: In the ElGamal signature scheme use the prime number \(p \) and the primitive root \(g \mod p \). Suppose that \(p \equiv 1 \pmod{4} \) and that \(g \) has only small prime factors. Let \(A \) be Alice’s public key.

1. Show that a solution \(z \) of the congruence \(A^q = g^{qz} \mod p \) can be found efficiently.

2. Let \(x \) be a document and let \(h \) be its hash value. Prove that \((q, (p - 3)(h - qz)/2) \) is a valid signature of \(x \).

p. 295 The correct formula for the determinant of the Vandermonde matrix is

\[
\det U = \prod_{1 \leq i < j \leq \ell} (x_j - x_i).
\]
Introduction to Cryptography
Buchmann, J.
2004, XVI, 338 p., Hardcover