Contents

Preface to the First Edition i
Preface to the Second Edition iii
Preface to the Third Edition iv
Glossary of Symbols xi
A. Prime Numbers 3
B. Divisibility 67
σ(n) = σ(n+1). 98 B14. Some irrational series. 99 B15. Solutions of σ(q) + σ(r) = σ(q + r). 100 B16. Powerful numbers. Squarefree numbers. 100 B17. Exponential-perfect numbers. 105 B18. Solutions of \(d(n) = d(n+1).\) 106 B19. \((m,n+1)\) and \((m+1,n)\) with same set of prime factors. The abc-conjecture. 108 B20. Cullen and Woodall numbers. 113 B21. \(k \cdot 2^n + 1\) composite for all \(n.\) 114 B22. Factorial \(n\) as the product of \(n\) large factors. 116 B23. Equal products of factorials. 117 B24. The largest set with no member dividing two others. 118 B25. Equal sums of geometric progressions with prime ratios. 119 B26. Densest set with no \(l\) pairwise coprime. 119 B27. The number of prime factors of \(n + k\) which don’t divide \(n + i,\) \(0 \leq i < k.\) 120 B28. Consecutive numbers with distinct prime factors. 121 B29. Is \(x\) determined by the prime divisors of \(x + 1, x + 2, \ldots, x + k?\) 121 B30. A small set whose product is square. 122 B31. Binomial coefficients. 124 B32. Grimm’s conjecture. 127 B33. Largest divisor of a binomial coefficient. 128 B34. If there’s an \(i\) such that \(n - i\) divides \(\binom{n}{i}.\) 131 B35. Products of consecutive numbers with the same prime factors. 132 B36. Euler’s totient function. 132 B37. Does \(\phi(n)\) properly divide \(n - 1?\) 136 B38. Solutions of \(\phi(m) = \sigma(n).\) 138 B39. Carmichael’s conjecture. 138 B40. Gaps between totatives. 140 B41. Iterations of \(\phi\) and \(\sigma.\) 141 B42. Behavior of \(\phi(\sigma(n))\) and \(\sigma(\phi(n)).\) 144 B43. Alternating sums of factorials. 146 B44. Sums of factorials. 147 B45. Euler numbers. 147 B46. The largest prime factor of \(n.\) 148 B47. When does \(2^a - 2^b\) divide \(n^a - n^b?\) 148 B48. Products taken over primes. 149 B49. Smith numbers. 150

D. Diophantine Equations 201

E. Sequences of Integers 301

F. None of the Above 355

Index of Authors Cited 395

General Index 417
Glossary of Symbols

A.P. arithmetic progression, $a, a + d, \ldots a + kd, \ldots$

$a_1 \equiv a_2 \mod b$ a_1 congruent to a_2, modulo b;
$a_1 - a_2$ divisible by b.

$A(x)$ number of members of a sequence not exceeding x;
e.g. number of amicable numbers not exceeding x

c a positive constant
(not always the same!)

d_n difference between consecutive primes;
$p_{n+1} - p_n$

$d(n)$ the number of (positive) divisors of n; $\sigma_0(n)$

$d \mid n$ d divides n; n is a multiple of d; there is an integer q
such that $dq = n$

$d \nmid n$ d does not divide n

e base of natural logarithms;
$2.718281828459045 \ldots$

E_n Euler numbers; coefficients in series for $\sec x$

$\exp\{..\}$ exponential function

F_n Fermat numbers; $2^{2^n} + 1$