# Contents

Preface ............................................................ vii

1 An introduction to survival and event history analysis .......... 1
  1.1 Survival analysis: basic concepts and examples ............. 2
    1.1.1 What makes survival special: censoring and truncation . 3
    1.1.2 Survival function and hazard rate ..................... 5
    1.1.3 Regression and frailty models ......................... 7
    1.1.4 The past ............................................ 9
    1.1.5 Some illustrative examples ............................ 9
  1.2 Event history analysis: models and examples ................. 16
    1.2.1 Recurrent event data ................................ 17
    1.2.2 Multistate models .................................... 18
  1.3 Data that do not involve time ................................ 24
  1.4 Counting processes ......................................... 25
    1.4.1 What is a counting process? .......................... 25
    1.4.2 Survival times and counting processes ............... 28
    1.4.3 Event histories and counting processes ............... 32
  1.5 Modeling event history data ................................ 33
    1.5.1 The multiplicative intensity model .................... 34
    1.5.2 Regression models .................................... 34
    1.5.3 Frailty models and first passage time models .......... 35
    1.5.4 Independent or dependent data? ........................ 36
  1.6 Exercises .................................................. 37

2 Stochastic processes in event history analysis ................. 41
  2.1 Stochastic processes in discrete time ......................... 43
    2.1.1 Martingales in discrete time .......................... 43
    2.1.2 Variation processes ................................... 44
    2.1.3 Stopping times and transformations .................... 45
    2.1.4 The Doob decomposition ............................... 47
  2.2 Processes in continuous time ................................ 48
2.2 Martingales in continuous time
  2.2.1 Martingales in continuous time ......................... 48
  2.2.2 Stochastic integrals ................................ 50
  2.2.3 The Doob-Meyer decomposition .......................... 52
  2.2.4 The Poisson process .................................. 52
  2.2.5 Counting processes .................................... 53
  2.2.6 Stochastic integrals for counting process martingales ..... 55
  2.2.7 The innovation theorem ................................ 56
  2.2.8 Independent censoring .................................. 57

2.3 Processes with continuous sample paths ....................... 61
  2.3.1 The Wiener process and Gaussian martingales ............. 61
  2.3.2 Asymptotic theory for martingales: intuitive discussion 62
  2.3.3 Asymptotic theory for martingales: mathematical formulation 63

2.4 Exercises ................................................. 66

3 Nonparametric analysis of survival and event history data .... 69
  3.1 The Nelson-Aalen estimator .................................. 70
    3.1.1 The survival data situation .............................. 71
    3.1.2 The multiplicative intensity model ....................... 76
    3.1.3 Handling of ties ....................................... 83
    3.1.4 Smoothing the Nelson-Aalen estimator ..................... 85
    3.1.5 The estimator and its small sample properties .......... 87
    3.1.6 Large sample properties ................................ 89
  3.2 The Kaplan-Meier estimator .................................. 90
    3.2.1 The estimator and confidence intervals ................... 90
    3.2.2 Handling tied survival times ............................. 94
    3.2.3 Median and mean survival times ......................... 95
    3.2.4 Product-integral representation ......................... 97
    3.2.5 Excess mortality and relative survival .................. 99
    3.2.6 Martingale representation and statistical properties .... 103
  3.3 Nonparametric tests ....................................... 104
    3.3.1 The two-sample case .................................... 105
    3.3.2 Extension to more than two samples ..................... 109
    3.3.3 Stratified tests ...................................... 110
    3.3.4 Handling of tied observations ......................... 111
    3.3.5 Asymptotics ........................................... 112
  3.4 The empirical transition matrix ................................ 114
    3.4.1 Competing risks and cumulative incidence functions ..... 114
    3.4.2 An illness-death model .................................. 117
    3.4.3 The general case ...................................... 120
    3.4.4 Martingale representation and large sample properties .. 123
    3.4.5 Estimation of (co)variances ............................ 124
  3.5 Exercises ................................................. 126
6.2.2 The Gamma frailty distribution ........................................... 235
6.2.3 The PVF family of frailty distributions ............................ 238
6.2.4 Lévy-type frailty distributions ....................................... 242
6.3 Hazard and frailty of survivors ........................................ 243
6.3.1 Results for the PVF distribution .................................... 243
6.3.2 Cure models ................................................................ 244
6.3.3 Asymptotic distribution of survivors .............................. 245
6.4 Parametric models derived from frailty distributions ............. 246
6.4.1 A model based on Gamma frailty: the Burr distribution .... 246
6.4.2 A model based on PVF frailty ...................................... 247
6.4.3 The Weibull distribution derived from stable frailty ........ 248
6.4.4 Frailty and estimation ................................................ 249
6.5 The effect of frailty on hazard ratio ...................................... 250
6.5.1 Decreasing relative risk and crossover ......................... 250
6.5.2 The effect of discontinuing treatment ............................ 253
6.5.3 Practical implications of artifacts ................................. 255
6.5.4 Frailty models yielding proportional hazards ................. 257
6.6 Competing risks and false protectivity ................................ 260
6.7 A frailty model for the speed of a process .......................... 262
6.8 Frailty and association between individuals ....................... 264
6.9 Case study: A frailty model for testicular cancer .................. 265
6.10 Exercises ........................................................................ 268

7 Multivariate frailty models .................................................. 271
7.1 Censoring in the multivariate case .................................... 272
7.1.1 Censoring for recurrent event data ............................... 273
7.1.2 Censoring for clustered survival data ............................ 274
7.2 Shared frailty models ...................................................... 275
7.2.1 Joint distribution ...................................................... 276
7.2.2 Likelihood ............................................................. 276
7.2.3 Empirical Bayes estimate of individual frailty .............. 278
7.2.4 Gamma distributed frailty ......................................... 279
7.2.5 Other frailty distributions suitable for the shared frailty model ................................................... 284
7.3 Frailty and counting processes ........................................... 286
7.4 Hierarchical multivariate frailty models ............................. 288
7.4.1 A multivariate model based on Lévy-type distributions .... 289
7.4.2 A multivariate stable model ...................................... 290
7.4.3 The PVF distribution with $m = 1$ ............................... 290
7.4.4 A trivariate model .................................................. 290
7.4.5 A simple genetic model ............................................ 291
7.5 Case study: A hierarchical frailty model for testicular cancer . 293
7.6 Random effects models for transformed times .................... 296
7.6.1 Likelihood function ................................................ 296
7.6.2 General case ......................................................... 298
9.5.3 Dynamic treatment regimes ..................................378
9.5.4 Marginal versus joint modeling ..............................380
9.6 Marginal modeling .............................................380
  9.6.1 Marginal structural models ..................................380
  9.6.2 G-computation: A Markov modeling approach .............382
9.7 Joint modeling ..................................................383
  9.7.1 Joint modeling as an alternative to marginal structural
        models ...............................................384
  9.7.2 Modeling dynamic systems ..................................385
9.8 Exercises .......................................................385

10 First passage time models: Understanding the shape of the hazard
    rate .........................................................................387
  10.1 First hitting time; phase type distributions .................389
    10.1.1 Finite birth-death process with absorbing state .........389
    10.1.2 First hitting time as the time to event .................390
    10.1.3 The risk distribution of survivors .......................392
    10.1.4 Reversibility and progressive models ...................393
  10.2 Quasi-stationary distributions ................................395
    10.2.1 Infinite birth-death process (infinite random walk) ..397
    10.2.2 Interpretation ............................................398
  10.3 Wiener process models .........................................399
    10.3.1 The inverse Gaussian hitting time distribution .........400
    10.3.2 Comparison of hazard rates .............................402
    10.3.3 The distribution of survivors ............................404
    10.3.4 Quasi-stationary distributions for the Wiener process
            with absorption ........................................405
    10.3.5 Wiener process with a random initial value ............407
    10.3.6 Wiener process with lower absorbing and upper reflecting
            barriers ..................................................408
    10.3.7 Wiener process with randomized drift ....................408
    10.3.8 Analyzing the effect of covariates for the randomized
            Wiener process ..........................................410
  10.4 Diffusion process models ......................................416
    10.4.1 The Kolmogorov equations and a formula for the hazard
            rate .....................................................418
    10.4.2 An equation for the quasi-stationary distribution ....419
    10.4.3 The Ornstein-Uhlenbeck process ........................421
  10.5 Exercises .......................................................424

11 Diffusion and Lévy process models for dynamic frailty ...........425
  11.1 Population versus individual survival ..........................426
  11.2 Diffusion models for the hazard .............................428
    11.2.1 A simple Wiener process model .........................428
11.2.2 The hazard rate as the square of an Ornstein-Uhlenbeck process ...........................................430
11.2.3 More general diffusion processes ..........................431
11.3 Models based on Lévy processes ..........................................432
11.4 Lévy processes and subordinators ....................................433
11.4.1 Laplace exponent ...........................................433
11.4.2 Compound Poisson processes and the PVF process ..........434
11.4.3 Other examples of subordinators ............................435
11.4.4 Lévy measure ...........................................436
11.5 A Lévy process model for the hazard ............................438
11.5.1 Population survival ......................................440
11.5.2 The distribution of \( h \) conditional on no event ........440
11.5.3 Standard frailty models ..................................441
11.5.4 Moving average ..........................................441
11.5.5 Accelerated failure times ..................................443
11.6 Results for the PVF processes ....................................444
11.6.1 Distribution of survivors for the PVF processes ..........445
11.6.2 Moving average and the PVF process ........................446
11.7 Parameterization and estimation .....................................448
11.8 Limit results and quasi-stationary distributions ...............450
11.8.1 Limits for the PVF process ................................452
11.9 Exercises ..................................................................453

A Markov processes and the product-integral .........................457
A.1 Hazard, survival, and the product-integral .....................458
A.2 Markov chains, transition intensities, and the Kolmogorov equations ...........................................461
A.2.1 Discrete time-homogeneous Markov chains ................463
A.2.2 Continuous time-homogeneous Markov chains ..........465
A.2.3 The Kolmogorov equations for homogeneous Markov chains ...........................................467
A.2.4 Inhomogeneous Markov chains and the product-integral .468
A.2.5 Common multistate models .................................471
A.3 Stationary and quasi-stationary distributions .....................475
A.3.1 The stationary distribution of a discrete Markov chain ....475
A.3.2 The quasi-stationary distribution of a Markov chain with an absorbing state ..........................477
A.4 Diffusion processes and stochastic differential equations .......479
A.4.1 The Wiener process .........................................480
A.4.2 Stochastic differential equations ..............................482
A.4.3 The Ornstein-Uhlenbeck process ............................484
A.4.4 The infinitesimal generator and the Kolmogorov equations for a diffusion process ..................486
A.4.5 The Feynman-Kac formula ....................................488
A.5 Lévy processes and subordinators ....................................490
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.5.1 The Lévy process</td>
<td>491</td>
</tr>
<tr>
<td>A.5.2 The Laplace exponent</td>
<td>493</td>
</tr>
<tr>
<td>B Vector-valued counting processes, martingales and stochastic</td>
<td>495</td>
</tr>
<tr>
<td>integrals</td>
<td></td>
</tr>
<tr>
<td>B.1 Counting processes, intensity processes and martingales</td>
<td>495</td>
</tr>
<tr>
<td>B.2 Stochastic integrals</td>
<td>496</td>
</tr>
<tr>
<td>B.3 Martingale central limit theorem</td>
<td>497</td>
</tr>
<tr>
<td>References</td>
<td>499</td>
</tr>
<tr>
<td>Author index</td>
<td>521</td>
</tr>
<tr>
<td>Index</td>
<td>529</td>
</tr>
</tbody>
</table>
Survival and Event History Analysis
A Process Point of View
Aalen, O.; Borgan, O.; Gjessing, H.
2008, XVIII, 540 p., Hardcover