
2
Probabilistic background

2.1 Preliminaries

Event time data, where one is interested in the time to a specific event
occurs, are conveniently studied by the use of certain stochastic processes.
The data itself may be described as a so-called counting process, which
is simply a random function of time t, N(t). It is zero at time zero and
constant over time except that it jumps at each point in time where an
event occurs, the jumps being of size 1.

Figure 2.1 shows two counting processes. Figure 2.1 (a) shows a counting
process for survival data where one event is observed at time 7 at the time
of death for a patient. Figure 2.1 (b) illustrates the counting process for
recurrent events data where an event is observed multiple times, such as
the times of dental cavities, with events at times 3, 4 and 7.

Why is this useful one could ask. Obviously, it is just a mathematical
framework to represent timings of events, but a nice and useful theory has
been developed for counting processes. A counting process N(t) can be
decomposed into a model part and a random noise part

N(t) = Λ(t) +M(t),

referred to as the compensator Λ(t) and the martingaleM(t) of the counting
process. These two parts are also functions of time and stochastic. The
strength of this representation is that a central limit theorem is available for
martingales. This in turn makes it possible to derive large sample properties
of estimators for rather general nonparametric and semiparametric models
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FIGURE 2.1: (a) Counting process for survival data with event time at time
7. (b) Counting process for recurrent events data, with event times at 3,4
and 7.

for such data. One chief example of this is the famous Cox model, which we
return to in Section 6.1. To read more about counting processes and their
theory we refer to Brémaud (1981), Jacobsen (1982), Fleming & Harrington
(1991) and Andersen et al. (1993).

When assumptions are weakened, sometimes the decomposition will not
result in an error term that is a martingale but only a zero-mean stochastic
process, and in this case asymptotic properties can be developed using
empirical process theory; see, for example, van der Vaart & Wellner (1996).

We shall also demonstrate that similar flexible models for longitudinal
data may be studied fruitfully by the use of martingale methods. The key
to this is that longitudinal data may be represented by a so-called marked
point process, a generalization of a counting process. A marked point pro-
cess is a mathematical construction to represent timing of events and their
corresponding marks, and this is precisely the structure of longitudinal data
where responses (marks) are collected over time. As for counting processes,
a theory has been developed that decomposes a marked point process into
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a model part (compensator) and a random noise part (martingale). As a
consequence of this, the analysis of longitudinal data therefore has many
parallels with counting process data, and martingale methods may be in-
voked when studying large sample properties of concrete estimators. Some
key references for additional reading about marked point processes are Bré-
maud (1981) and Last & Brandt (1995).

Before giving the definitions and properties of counting processes, marked
point processes and martingales, we need to introduce some concepts from
general stochastic process theory.

Behind all theory to be developed is a measurable space (Ω,F , P ), where
F is a σ-field and P is probability measure defined on F . A stochastic
process is a family of random variables indexed by time (X(t) : t ≥ 0). The
mapping t → X(t, ω), for ω ∈ Ω, is called a sample path. The stochastic
process X induces a family of increasing sub-σ-fields by

FX
t = σ{X(s) : 0 ≤ s ≤ t}

called the internal history of X . Often when formulating models we will
condition on events that occurred prior in time. We could for example, at
time t, condition on the history generated by the process X up to time
t. In many applications, however, we will need to condition on further
information than that generated by only one stochastic process. To this end
we therefore define more generally a history (Ft; t ≥ 0) as a family of sub-σ-
fields such that, for all s ≤ t, Fs ⊂ Ft, which means A ∈ Fs implies A ∈ Ft.
A history is also called a filtration. Sometimes information (filtrations) are
combined and for two filtrations F1

t and F2
t we let F1

t ∨ F2
t denote the

smallest filtration that contains both F1
t and F2

t . A stochastic process X is
adapted to a filtration Ft if, for every t ≥ 0, X(t) is Ft-measurable, and in
this case FX

t ⊂ Ft. We shall often be dealing with stochastic processes with
sample paths that, for almost all ω, are right-continuous and with left-hand
limits. Such processes are called cadlag (continu à droite, limité à gauche).
For a function f we define the right-hand limit f(t+) = lims→t,s>tf(s)
and the left-hand limit f(t−) = lims→t,s<tf(s).

A nonnegative random variable T is called a stopping time with respect
to Ft if (T ≤ t) ∈ Ft, for all t ≥ 0. For a stochastic process X and a
stopping time T , the stopped process XT is defined by X(t) = X(t ∧ T ),
where a ∧ b denotes the minimum of a and b. A localizing sequence is a
sequence of stopping times Tn that is nondecreasing and satisfies Tn → ∞
as n → ∞. A property of a stochastic process X is said to hold locally if
there exists a localizing sequence (Tn) such that, for each n, the stopped
process XTn has the property.
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2.2 Martingales

Martingales play an important role in the statistical applications to be
presented in this monograph. Often we shall see that estimating functions
(evaluated at true parameter values) and the difference between estima-
tors and true values are (up to a lower-order term) martingales. Owing
to the existence of the celebrated central limit theorem for martingales of
Rebolledo (1980), there is an elegant and simple approach to derive a com-
plete asymptotic description of the suggested estimators. In the following
we give the definition of a martingale.

A martingale with respect to a filtration Ft is a right-continuous stochas-
tic process M with left-hand limits that, in addition to some technical
conditions:

(i) M is adapted to Ft, and (ii) E|M(t)| <∞ for all t,

possesses the key martingale property

(iii) E(M(t) | Fs) = M(s) for all s ≤ t, (2.1)

thus stating that the mean of M(t) given information up to time s is M(s)
or, equivalently,

E(dM(t) | Ft−) = 0 for all t > 0, (2.2)

where Ft− is the smallest σ-algebra containing all Fs, s < t and dM(t) =
M((t+ dt)−)−M(t−). A martingale thus has zero-mean increments given
the past, and without conditioning. Condition (ii) above is referred to as
M being integrable. A martingale may be thought of as an error process in
the following sense.

Ĺ Since E(M(t)) = E(M(0)), a martingale has constant mean as a
function of time, and if the martingale is zero at time zero (as will be
the case in our applications), the mean will be zero. Such a martingale
is also called a zero-mean martingale.

Ĺ Martingales have uncorrelated increments, that is, for a martingale
M it holds that

Cov(M(t) −M(s),M(v) −M(u)) = 0 (2.3)

for all 0 ≤ s ≤ t ≤ u ≤ v.

If M satisfies
E(M(t) | Fs) ≥M(s) for all s ≤ t, (2.4)

instead of condition (2.1), then M is a submartingale. A martingale is called
square integrable if supt E(M(t)2) <∞. A local martingale M is a process
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such that there exist a localizing sequence of stopping times (Tn) such that,
for each n, MTn is a martingale. If, in addition, MTn is a square integrable
martingale, then M is said to be a local square integrable martingale.

To be able to formulate the crucial Doob-Meyer decomposition we need
to introduce the notion of a predictable process. Loosely speaking, a pre-
dictable process is a process whose value at any time t is known just before
t. Here is one characterization: a process X is predictable if and only if
X(T ) is FT−-measurable for all stopping times T . The principal class of a
predictable processes is the class of Ft-adapted left-continuous processes.

Let X be a cadlag adapted process. Then A is said to be the compensator
ofX if A is a predictable, cadlag and finite variation process such thatX−A
is a local zero-mean martingale. If a compensator exists, it is unique. A
process A is said to be of finite variation if for all t > 0 (P -a.s.)∫ t

0

|dA(s)| = sup
D

K∑
i=1

|A(ti) −A(ti−1)| <∞,

where D ranges over all subdivisions of [0, t]: 0 = t0 < t1 < · · · < tK = t.
One version of the Doob-Meyer decomposition as formulated in Andersen

et al. (1993) is as follows.

Theorem 2.2.1 The cadlag adapted process X has a compensator if and
only if X is the difference of two local submartingales.

An important simple consequence of the theorem is that, if the cadlag
adapted processX is a local submartingale, then it has a compensator since
the constant process 0 is a local submartingale.

Let M and M̃ be local square integrable martingales. By Jensen’s in-
equality, M2 is a local submartingale since

E(M2(t) | Fs) ≥ (E(M(t) | Fs))2 = M2(s)

and hence, by the Doob-Meyer decomposition, it has a compensator. This
compensator is denoted by 〈M,M〉, or more compactly 〈M〉, and is termed
the predictable variation process of M . By noting that MM̃ = 1

4 (M+M̃)2−
1
4 (M − M̃)2, it is similarly derived that MM̃ has a compensator, written
〈M, M̃〉, and termed the predictable covariation process of M and M̃ .

The predictable covariation process is symmetric and bilinear like an
ordinary covariance. If 〈M, M̃〉 = 0, then M and M̃ are said to be orthog-
onal. The predictable covariation process is used to identify asymptotic
covariances in the statistical applications to follow later on. This is partly
explained by the relationship

Cov(M(s), M̃(t)) = E(〈M, M̃〉)(t), s ≤ t. (2.5)

Estimation of the asymptotic covariances on the other hand may be carried
out by use of the quadratic covariation process. This process is defined even
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when M and M̃ are just local martingales. When M and M̃ further are
of finite variation (as will be the case in our applications), the quadratic
covariation process of M and M̃ , denoted by [M, M̃ ], has the explicit form

[M, M̃ ](t) =
∑
s≤t

ΔM(s)ΔM̃(s). (2.6)

In the case where M̃ = M , (2.6) is written [M ](t) and called the quadratic
variation process of M . The two processes [M ] and [M, M̃ ] are also called
the optional variation process and optional covariation process, respec-
tively.

For the process [M ], it holds that M2 − [M ] is a local martingale as
was also the case with 〈M〉. An important distinction between the two
processes, however, is that [M ] may not be predictable; in our applications
it will never be! In the applications, the predictable variation process 〈M〉
will be determined by the model characteristics of the particular model
studied while the quadratic variation process [M ] may be computed from
the data at hand and therefore qualifies as a potential estimator.

Another useful characterization of [M ] is the following. When [M ] is
locally integrable, then M will be locally square integrable and 〈M〉 will
be the compensator of [M ]! Similarly, 〈M, M̃〉 will be the compensator of
[M, M̃ ]. This observation together with (2.6) enable us to compute both
the quadratic and predictable covariation process.

In the statistical applications, stochastic integrals will come natural into
play. Since we shall be dealing only with stochastic integrals where we inte-
grate with respect to a finite variation process, all the considered stochastic
integrals are ordinary pathwise Lebesgue-Stieltjes integrals, see Fleming &
Harrington (1991) (Appendix A) for definitions. Of special interest are the
integrals where we integrate with respect to a martingale. Such process
integrals have nice properties as stated in the following.

Theorem 2.2.2 Let M and M̃ be finite variation local square integrable
martingales, and let H and K be locally bounded predictable processes.
Then

∫
H dM and

∫
K dM̃ are local square integrable martingales, and

the quadratic and predictable covariation processes are[ ∫
H dM,

∫
K dM̃

]
=
∫
HK d[M, M̃ ],〈 ∫

H dM,

∫
K dM̃

〉
=
∫
HK d〈M, M̃〉.

The quadratic and predictable variation processes of, for example,
∫
H dM

are seen to be[ ∫
H dM

]
=
∫
H2 d[M ],

〈 ∫
H dM

〉
=
∫
H2 d〈M〉.
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The matrix versions of the above formulae for the quadratic and predictable
covariation processes read

[ ∫
H dM,

∫
K dM̃

]
=
∫
H d[M, M̃ ]KT , (2.7)〈 ∫

H dM,

∫
K dM̃

〉
=
∫
H d〈M, M̃〉KT , (2.8)

where M and M̃ are two vectors, and H and K are two matrices with
dimensions such that the expressions make sense. In this case [M, M̃ ] and
〈M, M̃〉 should be calculated componentwise.

2.3 Counting processes

Before giving the definition of a counting process we first describe one key
example where counting processes have shown their usefulness.

Example 2.3.1 (Right-censored survival data)

Let T ∗ and C be two nonnegative, independent random variables. The
random variable T ∗ denotes the time to the occurrence of some specific
event. It could be time to death of an individual, time to blindness for a
diabetic retinopathy patient or time to pregnancy for a couple. In many
such studies the exact time T ∗ may never be observed because it may be
censored at time C, that is, one only observes the minimum T = T ∗ ∧C of
T ∗ and C, and whether it is the event or the censoring that has occurred,
recorded by the indicator variable Δ = I(T ∗ ≤ C). One simple type of
censoring that is often encountered is that a study is closed at some point
in time before all subjects have experienced the event of interest. In the
counting process formulation the observed data (T,Δ) are replaced with
the pair (N(t), Y (t)) of functions of time t, where N(t) = I(T ≤ t,Δ = 1)
is the counting process jumping at time T ∗ if T ∗ ≤ C (Figure 2.2), and
Y (t) = I(t ≤ T ) is the so-called at risk indicator being one at time t if
neither the event nor the censoring has happened before time t. Assume that
T ∗ has density f and let S(t) = P (T ∗ > t) denote the survival function. A
key concept in survival analysis is the hazard function

α(t) =
f(t)
S(t)

= lim
h↓0

1
h
P (t ≤ T ∗ < t+ h |T ∗ ≥ t), (2.9)

which may also be interpreted as the instantaneous failure rate. �

The formal definition of a counting process is as follows. A counting
process {N(t)} is stochastic process that is adapted to a filtration (Ft),
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FIGURE 2.2: The counting process N(t) = I(T ≤ t,Δ = 1) with T ∗ = 5
and C > T ∗ (upper left panel) and corresponding at risk process (upper
right panel). The counting process N(t) = I(T ≤ t,Δ = 1) with T ∗ > C
and C = 2 (lower left panel) and corresponding at risk process (lower right
panel).

cadlag, with N(0) = 0 and N(t) < ∞ a.s., and whose paths are piecewise
constant with jumps of size 1.

A counting process N is a local submartingale and therefore has com-
pensator, Λ, say. The process Λ is nondecreasing and predictable, zero at
time zero, and such that

M = N − Λ

is a local martingale with respect to Ft. In fact, M is a local square inte-
grable martingale (Exercise 2.5). It also holds that

EN(t) = EΛ(t),

and further, if EΛ(t) <∞, that M is a martingale (Exercise 2.6).
We shall only deal with the so-called absolute continuous case, where the

above compensator has the special form

Λ(t) =
∫ t

0

λ(s) ds,

where the intensity process λ(t) is a predictable process. The counting
process N is then said to have intensity process λ.
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By (2.6) is seen that the quadratic variation process of M is

[M ] = N,

and, since it is locally integrable, the predictable variation process of M is

〈M〉 = Λ

by the uniqueness of the compensator.
A multivariate counting process

N = (N1, . . . Nk)

is a vector of counting processes such that no two components jump simul-
taneously. It follows that

〈Mj ,Mj′〉 = [Mj,Mj′ ] = 0, j �= j′,

where the Mj ’s are the associated counting process martingales.

Example 2.3.2 (Continuation of Example 2.3.1)

Let the history be given by

Ft = σ{I(T ≤ s,Δ = 0), I(T ≤ s,Δ = 1) : s ≤ t}.

As noted above, the counting processN(t) has a compensator Λ(t). It turns
out that the compensator is

Λ(t) =
∫ t

0

Y (s)α(s) ds, (2.10)

and hence that N(t) has intensity process

λ(t) = Y (t)α(t).

This may be shown rigorously, see for example Fleming & Harrington
(1991). A heuristic proof of the martingale condition is as follows. Since
(2.10) is clearly Ft-adapted and left-continuous, it is predictable. By the
independence of T ∗ and C, dN(t) is a Bernoulli variable with conditional
probability Y (t)α(t) dt of being one given Ft−, see also Exercise 2.7. Thus,

E(dN(t) | Ft−) = Y (t)α(t) dt = dΛ(t) = E(dΛ(t) | Ft−),

which justify the martingale condition (2.2) for M = N − Λ. �

Let us see how the decomposition of a counting process into its compen-
sator and martingale parts may be used to construct estimators.
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Example 2.3.3 (The Nelson-Aalen estimator)

Let (T ∗
i , Ci), i = 1, . . . , n, be n i.i.d. replicates from the model described in

Example 2.3.2. Put Ni(t) = I(Ti ≤ t,Δi = 1) and Yi(t) = I(t ≤ Ti) with
Ti = T ∗

i ∧ Ci and Δi = I(T ∗
i ≤ Ci). Let F i

t be defined similarly as Ft in
Example 2.3.1 and 2.3.2 and let Ft =

∨
i F i

t . Let further

N·(t) =
n∑

i=1

Ni(t), Y·(t) =
n∑

i=1

Yi(t).

The counting process N·(t) is seen to have compensator

Λ(t) =
∫ t

0

Y·(s)α(s) ds,

and, hence,
M·(t) = N·(t) − Λ(t)

is a local square integrable martingale with respect to Ft. In the last display,
M·(t) =

∑n
i=1Mi(t) with Mi(t) = Ni(t) − Λi(t), i = 1, . . . , n.

Now, decomposing the counting process into its compensator and a mar-
tingale term gives

N·(t) =
∫ t

0

Y·(s)α(s) ds+M·(t)

and since dM·(t) is a zero-mean process, this motivates the estimating
equation

Y·(t)dA(t) = dN·(t),
where A(t) =

∫ t

0
α(s) ds. This leads to the Nelson-Aalen estimator

Â(t) =
∫ t

0

J(s)
Y·(s)dN·(s) (2.11)

of the integrated hazard function A(t), where J(t) = I(Y·(t) > 0), and
where we use the convention that 0/0 = 0. Notice that the Nelson-Aalen
estimator is nothing but a simple sum:

Â(t) =
∑
Ti≤t

Δi

Y·(Ti)
.

One may decompose Â(t) as

Â(t) =
∫ t

0

J(s)dA(s) +
∫ t

0

J(s)
Y·(s)dM·(s).
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By Theorem 2.2.2, it is seen that the second term on the right-hand side
of the above decomposition is a local square integrable martingale. Thus,
Â(t) is an unbiased estimator of∫ t

0

α(s)P (Y·(s) > 0) ds,

which already indicates that the Nelson-Aalen estimator will have sound
large-sample properties (under appropriate conditions). One consequence
of this is that E(Â(t)) ≤ A(t), and that the estimator will be close to
unbiased if there are subjects at risk at all times with high probability.

As we shall see later on, a lot more than (asymptotical) unbiasedness
can be said by use of the central limit theorem for martingales.

The Nelson-Aalen estimator may be formulated in the more general con-
text of multiplicative intensity models where, for a counting process N(t),
it is assumed that the intensity process λ(t) has a multiplicative structure

λ(t) = Y (t)α(t),

where α(t) is a nonnegative deterministic function (being locally integrable)
while Y (t) is a locally bounded predictable process. The extension thus
allows Y (t) to be something else than an at risk indicator and is useful to
deal with a number of different situations. The Nelson-Aalen estimator is
then

Â(t) =
∫ t

0

J(s)
Y (s)

dN(s),

where J(t) = I(Y (t) > 0). The estimator Â(t) was introduced for counting
process models by Aalen (1975, 1978b) and it generalizes the estimator
proposed by Nelson (1969, 1972). �

The concept of a filtration Ft may seem rather technical. It is important,
however, as it corresponds to what information we are given, which in
turn is used when specifying models. Sometimes we may be interested in
conditioning on more information than that carried by Ft. This additional
information may give rise to a new filtration, Gt say, such that Ft ⊆ Gt,
for all t. Assume that the counting process N(t) is adapted to both Ft and
Gt, and that N(t) has intensity λ(t) with respect to Gt. The intensity with
respect to the smaller filtration Ft is then

λ̃(t) = E(λ(t) | Ft−), (2.12)

which will generally be different from λ(t) as we condition on less informa-
tion. The above result is the so-called innovation theorem.

The following two examples of counting process models, illustrates how
the innovation theorem can be used to adjust models to the amount of
available information.
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Example 2.3.4 (Clustered survival data)

Consider the situation where we are interested in studying the time to the
occurrence of some event. Suppose in addition that there is some cluster
structure in the data. An example could be the time to onset of blindness in
patients with diabetic retinopathy, see Lin (1994). Patients were followed
over several years and the pair of waiting times to blindness in the left and
right eyes, respectively, were observed. In such a study one should expect
some correlation between the waiting times within clusters. One approach
to model such data is to use a random effects model, where the random
effect accounts for possible (positive) correlation within the clusters. For
ease of notation we describe the model in the situation where there is no
censoring. Let Tik denote the ith waiting time in the kth cluster, and put
Nik(t) = I(Tik ≤ t), Yik(t) = I(t ≤ Tik), i = 1, . . . , n, k = 1, . . . ,K.
Assume that Tk = (Tik, . . . , Tnk), k = 1, . . . ,K are i.i.d. random variables
such that Tik and Tjk (i �= j) are independent given the random effect Zk.
Let F ik

t be the internal history of Nik, Fk
t =

∨
i F ik

t and Ft =
∨

k Fk
t .

The Clayton-Oakes model (Clayton (1978); Oakes (1982)) is obtained by
assuming that Nik(t) has intensity

λik(t) = Yik(t)Zkα(t)

with respect to the enlarged filtration Gt, where

Gt =
∨
k

Gk
t ; Gk

t = Fk
t ∨ σ(Zk);

and by assuming that the Zk’s are i.i.d. gamma distributed with expectation
1 and variance η−1. The random effect Zk is also referred to as a frailty
variable, see Chapter 9. Besides carrying the information generated by the
counting processes, Gt also holds the information generated by the random
effects. The filtration Gt is not fully observed due to the unobserved random
effects. The observed filtration is Ft, and we now find the Ft-intensities
using the innovation theorem. One may show that

E(Zk | Ft−) =
η +N·k(t−)

η +
∫ t

0 Y·k(s)α(s) ds
,

where N·k(t) =
∑n

i=1Nik(t) and Y·k(t) =
∑n

i=1 Yik(t), k = 1 . . . ,K. The
Ft-intensity is hence

λ̃ik(t) = Yik(t)
(

η +N·k(t−)

η +
∫ t

0
Y·k(s)α(s) ds

)
α(t).

Estimation of A(t) =
∫ t

0
α(s) ds in this context may be carried out by

use of the EM-algorithm, which was originally suggested by Gill (1985)
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and further developed by Klein (1992) and Nielsen et al. (1992), see also
Andersen et al. (1993).

The above approach could be called conditional in the sense that the
intensity of Nik(t) is modeled conditional on Zk. An alternative approach
that avoids joint modeling of data is the so-called marginal approach where
the intensity of Nik(t) is only specified with respect to the marginal filtra-
tion F ik

t . It is assumed that Nik(t) has F ik
t -intensity

Yik(t)α(t), (2.13)

whereas it is not assumed that the Ft-intensity is governed by (2.13) be-
cause that would correspond to assuming independence between subjects
within each cluster, which obviously would be wrong with data like those
mentioned in the beginning of this example. Estimation of A(t) using the
marginal approach is done by the usual Nelson-Aalen estimator ignoring
the cluster structure of the data. Standard error estimates, however, should
be computed differently. We return to clustered survival data in Chapter
9.

�
Example 2.3.5 (The additive hazards model and filtrations)

Consider the survival of a subject with covariates X = (X1, ..., Xp, Xp+1)
and assume that the corresponding counting process of the subject, N(t),
has intensity on the additive hazards form

λp+1(t) = Y (t)

⎛⎝p+1∑
j=1

Xjαj(t)

⎞⎠
with respect to the history FN

t ∨σ(p+1), where FN
t is the internal history

of N and σ(i) = σ(X1, ..., Xi) for i = 1, ..., p + 1 the σ-fields generated
by different sets of the covariates, In the above display, Y (t) is an at risk
indicator and αj(t), j = 1, ..., p + 1, are locally integrable deterministic
unknown functions.

If only the p first covariates are known, or used, in the model the intensity
changes, by the innovation theorem, to

λp(t) = E(λp+1(t)|FN
t ∨ σ(p))

=
p∑

i=1

Y (t)Xjαj(t) + Y (t)αp+1(t)E(Xp+1|Y (t) = 1, X1, ..., Xp).

The last conditional mean of Xp+1 given that the subject is at risk (has
survived), and the observed covariates can be computed (under regularity
conditions) to be minus the derivative of log(f(t)), where

f(t) = E(exp(−
∫ t

0

αp+1(s)dsXp+1)|X1, ..., Xp)



30 2. Probabilistic background

is the conditional Laplace transform of Xp+1 evaluated at
∫
αp+1. Under

certain assumptions, such as independence between the covariates, it is seen
that the additive structure of the intensity is preserved, see Exercise 5.1.
This example was given by Aalen (1989) �

2.4 Marked point processes

Later on we shall describe how nonparametric and semiparametric models
for regression data and longitudinal data may be analyzed fruitfully by the
use of martingale calculus. A key notion in this treatment is a generaliza-
tion of counting processes, or point processes, to marked point processes,
which will be introduced in the following. To a large extent we follow the
exposition of marked point processes given by Brémaud (1981), see also the
recent Last & Brandt (1995).

The idea is that instead of just recording the time points Tk at which
specific events occur (as for the counting processes) we also observe an ad-
ditional variable Zk (the response variable in the longitudinal data setting)
at each time point Tk. To make things precise we fix a measurable space
(E, E), called the mark space, and assume that

(i) (Zk, k ≥ 1) is a sequence of random variables in E,

(ii) the sequence (Tk, k ≥ 1) constitutes a counting process

N(t) =
∑

k

I(Tk ≤ t).

The double sequence (Tk, Zk) is called a marked point process with (Zk)
being the marks. To each A ∈ E is associated a counting process

Nt(A) =
∑

k

I(Tk ≤ t)I(Zk ∈ A),

that counts the number of jumps before time t with marks in A. The marked
point process is also identified with its associated counting measure defined
by

p((0, t] ×A) = Nt(A), t > 0, A ∈ E .
A marked point process counting measure thus accumulates information
over time about the jump times and marks just as in the simpler counting
process situation where there are no marks. Just as for counting processes it
is also useful to consider integrals with respect to the marked point process.
A marked point process integral has the following simple interpretation:∫ t

0

∫
E

H(s, z)p(ds× dz) =
∑

k

H(Tk, Zk)I(Tk ≤ t).
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The internal history of the marked point process is defined by

Fp
t = σ(Ns(A) : 0 ≤ s ≤ t, A ∈ E),

and we let Ft be any history of p, that is, Fp
t ⊂ Ft. If, for each A ∈ E ,

Nt(A) has intensity λt(A) (predictable with respect to Ft), we then say
that p(dt× dz) admits the intensity kernel λt(dz). We let λt = λt(E) and
assume that λt is locally integrable. A probability measure on (E, E) is then
defined by

Ft(dz) =
λt(dz)
λt

.

The pair (λt, Ft(dz)) is called the local characteristics of p(dt× dz). If the
history Ft has the special form Ft = F0 ∨ Fp

t , we have the following

FTk
(A) = P (Zk ∈ A | FTk−) on {Tk <∞},

where
FTk− = σ(Tj , Zj ; 1 ≤ k − 1;Tk)

is the history generated by the occurrence times and marks obtained before
time Tk, and by Tk itself. The important above characterization of the
second term of the local characteristics as the distribution of the current
mark given past history and the time of the current mark is proved in
Brémaud (1981).

Let Ft be a history of p(dt× dz) and let P̃(Ft) be the history generated
by the mappings

H(t, z) = C(t)1A(z),

where C is a Ft-predictable process and 1A(z) is the indicator of z being
in A, A ∈ E . Any mapping H : (0,∞) × Ω × E → R, which is P̃(Ft)-
measurable is called an Ft-predictable process indexed by E. Let p have
intensity kernel λt(dz) and let H be a Ft-predictable process indexed by
E. We shall now consider the measure

q(dt× dz) = p(dt× dz) − λt(dz)dt (2.14)

obtained by compensating the marked point process measure by its inten-
sity kernel. One may show, for all t ≥ 0, that

M(t) =
∫ t

0

∫
E

H(s, z)q(ds× dz) (2.15)

is a locally square integrable martingale (with respect to Ft) if and only if∫ t

0

∫
E

H2(s, z)λs(dz)ds <∞ P − a.s.
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We now turn to the computation of the quadratic variation and predictable
variation process of M given by (2.15). Since (2.15) is of finite variation,
the optional variation process is

[M ](t) =
∑
s≤t

ΔM(s)2 =
∫ t

0

∫
E

H2(s, z)p(ds× dz).

The predictable variation process 〈M〉 is the compensator of [M ], and by
the uniqueness of the compensator, we hence have

〈M〉(t) =
∫ t

0

∫
E

H2(s, z)λs(dz)ds.

Let p1(dt × dz) and p2(dt × dz) be two marked point processes with
intensity kernels λt(dz) and μt(dz), respectively. Let Hj , j = 1, 2, be Ft-
predictable processes indexed by E where Ft ⊃ Fp1

t ∨ Fp2
t , and assume

that∫ t

0

∫
E

H2
1 (s, z)λs(dz)ds <∞,

∫ t

0

∫
E

H2
2 (s, z)μs(dz)ds <∞ P − a.s.

Write Mj(t) =
∫ t

0

∫
E
Hj(s, z)qj(ds × dz), j = 1, 2. Assume that the two

induced counting process, N1(t) and N2(t), have no jumps in common.
Proceeding as above one may then derive that [M1,M2] = 0 and hence
〈M1,M2〉 = 0. Also,

[
∫ t

0

∫
E

H1q1(ds× dz),
∫ t

0

∫
E

H2q1(ds× dz)] =
∫ t

0

∫
E

H1H2p1(ds× dz),

and

〈
∫ t

0

∫
E

H1q1(ds× dz),
∫ t

0

∫
E

H2q1(ds× dz)〉 =
∫ t

0

∫
E

H1H2λs(dz)ds,

where the dependence of the integrands on s and z has been suppressed.
The following example illustrates how i.i.d. regression data may be put

into the marked point process framework. Note how the techniques in the
example closely parallel the similar development of the Nelson-Aalen esti-
mator in the counting process setup.

Example 2.4.1 (Regression data)

Consider a sample (Ti, Zi), i = 1, . . . , n, of n i.i.d. regression data with Zi

being the (one-dimensional) response and Ti the (one-dimensional) regres-
sor. Let

E(Zi |Ti = t) = φ(t)
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and assume that Ti has an absolute continuous distribution on [0,∞) with
hazard function α(t). For simplicity we further assume for the moment
that this distribution is known, that is, the hazard function is assumed to
be known. Assume also that

∫ t

0
α(s)φ(s) ds < ∞ for all t. Each (Ti, Zi)

constitutes a marked point process pi and with∫ t

0

∫
E

zpi(ds× dz) = ZiI(Ti ≤ t),

we have the decomposition∫ t

0

∫
E

zpi(ds× dz) =
∫ t

0

Yi(s)α(s)φ(s) ds +
∫ t

0

∫
E

zqi(ds× dz),

where the second term on the right-hand side of this display is a martingale
with respect to the internal filtration Fpi

t . Writing the above equation in
differential form and summing over all subjects gives

n∑
i=1

∫
E

zpi(dt× dz) = Y·(t)α(t) dΦ(t) +
n∑

i=1

∫
E

zqi(dt× dz), (2.16)

where Y·(t) =
∑n

i=1 Yi(t) and Φ(t) =
∫ t

0 φ(s) ds. Assume that inft α(t) > 0.
Since α is known, (2.16) suggests the following estimator of Φ(t):

Φ̂(t) =
n∑

i=1

∫ t

0

∫
E

z

Y·(s)α(s)
pi(ds× dz)

=
n∑

i=1

Zi

Y·(Ti)α(Ti)
I(Ti ≤ t). (2.17)

For this estimator we have

Φ̂(t) =
∫ t

0

J(s)dΦ(s) +M(t),

where J(t) = I(Y·(t) > 0) and

M(t) =
n∑

i=1

∫ t

0

∫
E

J(s)z
Y·(s)α(s)

qi(ds× dz),

which is seen to be a martingale with respect to the filtration spanned by
all the Fpi

t ’s. This implies that

E(Φ̂(t)) =
∫ t

0

P (Y·(t) > 0)dΦ(s)

just as in the Nelson-Aalen estimator case. The estimator will thus be close
to unbiased if there is a high probability that subjects are at risk at all
times. If φ(t) is positive, then E(Φ̂(t)) ≤ Φ(t). �
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2.5 Large-sample results

As mentioned earlier, one of the strengths of representing the data as either
a counting process or a marked point process is that we get martingales
into play and that a central limit theorem for martingales is available.
This theorem will be the main tool when we derive asymptotic results for
concrete estimators. The theorem is stated below.

We shall consider a sequence of R
k-valued local square integrable mar-

tingales (M (n)(t) : t ∈ T ) with either

T = [0,∞) or T = [0, τ ]

with τ <∞. For ε > 0, we letM (n)
ε be the R

k-valued local square integrable
martingale where M (n)

εl contains all the jumps of M (n)
l larger in absolute

value than ε, l = 1, . . . k, i.e.,

M
(n)
εl (t) =

∑
s≤t

ΔM (n)
l (s)I(|ΔM (n)

l (s)| > ε), l = 1, . . . , k.

Note, that for counting process martingales of the form

M̃(t) =
∫ t

0

H(s)dM(s)

with M(t) = N(t) − Λ(t) then

M̃εj(t) =
∑

l

∫ t

0

Hjl(s)I(|Hjl(s)| > ε)dMl(s).

A Gaussian martingale is an R
k-valued martingale U such that U(0) = 0

and the distribution of any finite family (U(t1), . . . , U(tj)) is Gaussian.
Write V (t) for the variance-covariance matrix of U(t). It follows that

(i) 〈U〉(t) = V (t) for t ≥ 0;

(ii) V (t) − V (s) is positive semidefinite for s ≤ t;

(iii) U(t) − U(s) is independent of (U(r); r ≤ s) for s ≤ t.

A stochastic process U with the only requirement that is has continuous
sample paths and normal distributed finite dimensional distributions is said
to be a Gaussian process.

We may then state one form of the martingale central limit theorem.

Theorem 2.5.1 (CLT for martingales). Let (M (n)(t) : t ∈ T ) be a se-
quence of R

k-valued local square integrable martingales. Assume that

〈M (n)〉(t) P→ V (t) for all t ∈ T as n→ ∞, (2.18)

〈M (n)
εl 〉(t) P→ 0 for all t ∈ T , l and ε > 0 as n→ ∞. (2.19)
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Then
M (n) D→ U in (D(T ))k as n→ ∞, (2.20)

where U is a Gaussian martingale with covariance function V . Moreover,
〈M (n)〉 and [M (n)] converge uniformly on compact subsets of T , in proba-
bility, to V .

The theorem is due to Rebolledo (1980). The result (2.20) says that we
have weak convergence of the process M (n) to U on the space (D(T ))k

that consists of cadlag functions on T into R
k and is endowed with the

Skorokhod topology, see e.g. Fleming & Harrington (1991) for definitions.
The condition (2.19) states that the jumps of M (n) should become neg-

ligible as n → ∞ (see (2.25)), which makes sense if M (n) shall converge
towards a process with continuous sample paths. Condition (2.18) says that
the (predictable) variation process of M (n) becomes deterministic and ap-
proaches the variance function of the limit process as n → ∞, which also
makes sense in light of (2.5).

To illustrate the use of the martingale central limit theorem, we consider
the Nelson-Aalen estimator (Example 2.3.3), and the i.i.d. regression set-up
(Example 2.4.1).

Example 2.5.1 (The Nelson-Aalen estimator)

Consider the situation with n possibly right-censored survival times as de-
scribed in Example 2.3.3. It was seen there that the Nelson-Aalen estimator
of the cumulative hazard function A(t) =

∫ t

0
α(s) ds takes the form

Â(t) =
∫ t

0

J(s)
Y·(s)dN·(s),

where J(t) = I(Y·(t) > 0),

N·(t) =
n∑

i=1

Ni(t), Y·(t) =
n∑

i=1

Yi(t),

with Ni(t) = I(Ti ≤ t,Δi = 1) and Yi(t) = I(t ≤ Ti), i = 1, . . . , n, the
basic counting processes and the at risk indicators, respectively. With

A∗(t) =
∫ t

0

J(s)dA(s),

it was also seen that

Â(t) −A∗(t) =
∫ t

0

J(s)
Y·(s)dM·(s)
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is a local square integrable martingale. Recall that M·(t) =
∑n

i=1Mi(t)
with Mi(t) = Ni(t) −

∫ t

0
Yi(s)α(s) ds. By writing

n1/2(Â(t) −A(t)) = n1/2
(
(A∗(t) −A(t)) + (Â(t) −A∗(t))

)
= n1/2

∫ t

0

(J(s) − 1)α(s) ds+ n1/2

∫ t

0

J(s)
Y·(s)dM·(s),

(2.21)

we see that under regularity conditions the asymptotic distribution of the
Nelson-Aalen estimator on [0, t], t ∈ T is a Gaussian martingale if it can be
shown that the second term in (2.21) converges to a Gaussian martingale
and that the first term in (2.21) converges to zero uniformly in probability.

We assume that
∫ t

0 α(s) ds < ∞ for all t ∈ T , and that there exists a
function y(s) such that

sup
s∈[0,t]

|n−1Y·(s) − y(s)| P→ 0; inf
s∈[0,t]

y(s) > 0. (2.22)

It may now be shown that (Exercise 2.8)

sup
s∈[0,t]

|n1/2

∫ s

0

(J(u) − 1)α(u) du| P→ 0,

and we may hence concentrate on the martingale term

M(s) = n1/2(Â(s) −A∗(s).

We see that, for s ≤ t,

〈M〉(s) =
∫ s

0

J(u)
n−1Y·(u)

α(u) du P→
∫ s

0

α(u)
y(u)

du

and

〈Mε〉(s) =
∫ s

0

J(u)
n−1Y·(u)

α(u)I
(
n1/2 J(u)

Y·(u)
> ε

)
du

P→ 0

(Exercise 2.8). Thus,

n1/2(Â(s) −A(s)) D→ U(s)

in D[0, t], t ∈ T , where U is a Gaussian martingale with variance function

V (s) =
∫ s

0

α(u)
y(u)

du.

Moreover, a uniformly consistent estimator of the variance function is given
by the quadratic variation process

[M ](s) = n

∫ s

0

J(u)
(Y·(u))2

dN·(u).
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In the case of simple random censorship, that is, the Ci’s are i.i.d. with
distribution function FC , say, (2.22) is fulfilled provided that FC(t−) < 1,
which says that the censoring must not be too heavy. In this case, y(s) =
(1−FT∗(s))(1−FC(s)), where FT∗ denotes the distribution function of the
survival times. �

Example 2.5.2 (Regression data)

Consider the i.i.d. regression setup of Example 2.4.1 where we observe i.i.d.
regression data where

Zi = φ(Ti) + ei

and the residual terms e1, . . . , en are independent with zero mean such that
E(Zi|Ti = t) = φ(t). As noted there an estimator of Φ(t) =

∫ t

0 φ(s)ds was
given by

Φ̂(t) =
n∑

i=1

∫ t

0

∫
E

z

Y·(s)α(s)
pi(ds× dz),

which may be rewritten as

Φ̂(t) =
∫ t

0

J(s)dΦ(s) +M(t),

where J(t) = I(Y·(t) > 0) and

M(t) =
n∑

i=1

∫ t

0

∫
E

J(s)z
Y·(s)α(s)

qi(ds× dz),

the latter being a martingale with respect to the filtration spanned by all
the Fpi

t ’s. By imposing appropriate conditions we may show that

n1/2(Φ̂(t) − Φ(t)) = n1/2M(t) + op(1),

uniformly in t, and the asymptotic distribution of Φ̂(t) may hence be de-
rived by use of the martingale central limit theorem. We have, for all s ≤ t,

〈n1/2M〉(s) =
∫ s

0

J(u)ψ(u)
n−1Y·(u)α(u)

du
P→
∫ s

0

ψ(u)
y(u)α(u)

du,

where
ψ(s) = E(Z2

i |Ti = s)

and y(s) is the limit in probability of n−1Y·(t) assuming that inft∈T y(t) >
0. Assume also that ψ(t) < ∞ for all t. The martingale containing the
jumps of absolute size larger than ε is

(n1/2M)ε(s) = n1/2
n∑

i=1

∫ s

0

∫
E

J(u)|z|
Y·(u)α(u)

I

(
n1/2 J(u)|z|

Y·(u)α(u)
> ε

)
qi(du×dz)
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and hence

〈Mε〉(s) =
∫ s

0

J(u)
n−1Y·(u)α(u)

E(Z2I

(
n1/2 J(u)|Z|

Y·(u)α(u)
> ε

)
|T = u) du P→ 0,

Exercise 2.11. Thus,

n1/2(Φ̂(s) − Φ(s)) D→ U(s)

in D[0, t], t > 0, where U is a Gaussian martingale with variance function

V (s) =
∫ s

0

ψ(u)
y(u)α(u)

du.

A uniformly consistent estimator of the variance function is given by the
quadratic variation process

[n1/2M ](s) = n

n∑
i=1

∫ s

0

∫
E

J(u)z2

(Y·(u)α(u))2
pi(du × dz)

= n

n∑
i=1

J(Ti)Z2
i

(Y·(Ti)α(Ti))2
I(Ti ≤ s).

�

Once we have established convergence of our estimator as in the previ-
ous two examples, we can use their large-sample properties for hypothesis
testing and construction of confidence bands and intervals. Consider, for
example, the estimator Φ̂(t) in the previous example that converged to-
wards a Gaussian martingale U(t). Suppose that the limit process U(t) is
R-valued and has variance process V (t). Then a (1−α) pointwise confidence
interval for Φ(t) =

∫ t

0
φ(s)ds, for fixed t, is[

Φ̂(t) − cα/2Σ̂(t)1/2, Φ̂(t) + cα/2Σ̂(t)1/2
]

where nΣ̂(t) is an (uniformly consistent) estimator of V (t), like the one
based on the quadratic variation process, and cα/2 is the (1−α/2)-quantile
of the standard normal distribution. Since we often will be interested in the
behavior of φ(t), or, Φ(t), as function of t, inferences based on confidence
bands may be more informative than pointwise confidence limits. One type
of such confidence bands are the so-called Hall-Wellner bands (Hall & Well-
ner, 1980). These bands are uniform for some interval of interest that we
here denote as [0, τ ]. Since

U(t)V (τ)1/2[V (τ) + V (t)]−1

is distributed as

B0

(
V (t)

V (τ) + V (t)

)
,
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where B0 is the standard Brownian bridge (see Exercise 2.2), it follows that
approximate 100(1 − α)% confidence bands for Φ(t) are given by[

Φ̂(t) − dαΣ̂(τ)1/2

(
1 +

Σ̂(t)
Σ̂(τ)

)
, Φ̂(t) + dαΣ̂(τ)1/2

(
1 +

Σ̂(t)
Σ̂(τ)

)]
,

where dα is the (1 − α)-quantile in the distribution of

sup
t∈[0,1/2]

|B0(t)|,

see also Exercise 2.3. Tables of dα may be found in Schumacher (1984);
here we list some of the most used ones: d0.01 = 1.55, d0.05 = 1.27 and
d0.1 = 1.13. Likewise, the hypothesis

H0 : φ(t) = φ0(t) for all t

may be tested by use of a Kolmogorov-Smirnov test that rejects at level α
if

sup
t≤τ

|(Φ̂(t) − Φ0(t))Σ̂(τ)1/2[Σ̂(τ) + Σ̂(t)]−1| ≥ dα, (2.23)

where Φ0(t) =
∫ t

0 φ0(u) du. The Cramér-von Mises test rejects at level α if

∫ τ

0

(
(Φ̂(t) − Φ0(t))/Σ̂1/2(τ)

1 + Γ̂(t)

)2

d

(
Γ̂(t)

1 + Γ̂(t)

)
≥ eα (2.24)

where eα is the (1-α)-quantile in the distribution of
∫ 1/2

0
B0(u)2 du and

Γ̂(t) = Σ̂(t)/Σ̂(τ). For reference: e0.01 = 0.42, e0.05 = 0.25 and e0.1 = 0.19;
a detailed table of eα may be found in Schumacher (1984).

Example 2.5.3

We here present a small simulation study to illustrate the use of confidence
bands and the performance of the Kolmogorov-Smirnov and Cramér-von
Mises tests. We generated data from the model described in Example 2.4.1
with T being exponential with mean one. The response variable is normal
distributed with mean φ(t) and standard deviation 1/3. The true regression
function is φ(t) = 1/(1 + t) resulting in the cumulative regression function
Φ(t) = log (1 + t). The sample size was first set to n = 100 and we then
generated 500 datasets. Figure 2.3 (a) shows the true Φ(t) (thick full line),
a randomly chosen estimate (thin dotted line) and the average of the 500
estimators (thick dotted line), which is almost indistinguishable from the
true Φ(t). A slight bias is seen towards the end of the shown interval,
which has upper limit equal to 4.6 corresponding to the 99%-quantile of the
exponential distribution with mean one. According to the derived formulae
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FIGURE 2.3: (a) True cumulative regression function Φ(t) (thick full line);
average of 500 estimates of the cumulative regression function (thick dotted
line); a typical estimator of the cumulative regression function (thin dotted
line). (b) True cumulative regression function (thick full line) together with
95% pointwise confidence limits (thick dotted lines) and 95% Hall-Wellner
confidence bands (thick full lines); and 40 randomly chosen estimates of
the cumulative regression function (thin dotted lines).

this bias is due to the probability of being at risk towards the end of the
interval deviating slightly from 1. We notice that the estimator Φ̂(t), which
is given by (2.17), is a step function (like the Nelson-Aalen estimator) with
jumps at the observed values of t. Figure 2.3 (b) shows the true Φ(t) (thick
full line), 40 randomly chosen estimates (thin dotted lines), 95% pointwise
confidence limits (thick dotted lines) and 95% Hall-Wellner bands (thick
full lines) with τ = 3, which corresponds to 95% quantile of the considered
exponential distribution. We see that the estimators are contained within
the confidence bands with the exception of one or two estimators.

We also look at the performance of the Kolmogorov-Smirnov test and
the Cramér-von Mises test under the null. We generated data as described
above with sample size n = 100, 400 and computed the rejection probabil-
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ities for the two tests at level α = 1%, 5%, 10%. These are shown in Table
2.1, where each entry is based on 10000 repetitions.

n Test statistic α = 1% α = 5% α = 10%

100 KS 0.9 3.3 6.8

CM 1.0 5.1 10.2

400 KS 0.8 3.9 8.1

CM 0.9 4.9 10.6

TABLE 2.1: Rejection probabilities for the Kolmogorov-Smirnov test (KS)
and the Cramér-von Mises test (CM) computed at levels α = 1%, 5%, 10%

It is seen from Table 2.1 that the Cramér-von Mises test has the correct level
already at sample size n = 100. The Kolmogorov-Smirnov test is somewhat
conservative for n = 100 but approaches the correct level for n = 400. �

A useful result is the so-called Lenglart’s inequality, see Andersen et al.
(1993), which, in the special case of a local square integrable martingale
M , says that

P (sup
[0,τ ]

|M | > η) ≤ δ

η2
+ P (〈M〉(τ) > δ) (2.25)

for any η > 0 and δ > 0. Hence sup[0,τ ] |M | P→ 0 if 〈M〉(τ) P→ 0. A typical
application of (2.25) is the following. Suppose that Hn is a sequence locally
bounded predictable stochastic processes such that

sup
[0,τ ]

|Hn| P→ 0,

and that Mn is a sequence of local square integrable martingales such that
〈Mn〉(t) = Op(1). We then have

sup
[0,τ ]

|
∫ t

0

HndMn| P→ 0, (2.26)

since
〈
∫
HndMn〉(τ) P→ 0.

In some applications, however, we may not have that the Hn’s are pre-
dictable. A useful result, due to Spiekerman & Lin (1998), says that (2.26)
is still true provided that ∫ τ

0

|dHn(t)| = Op(1),
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that is, Hn is of bounded variation. The result can be further relaxed by
noticing that the proof of Spiekerman & Lin (1998) remains valid if Mn

is some process that converges in distribution to some zero-mean process
with continuous limits M . This extended version does not require any mar-
tingales, and is used in a couple of places in the proofs and is referred to
as the Lemma by Spiekerman & Lin (1998); see also Lin et al. (2000) and
Lin & Ying (2001).

Often we wish to conclude that∫ t

0

X(n)(s) ds p→
∫ t

0

f(s) ds as n→ ∞, (2.27)

where we know that X(n)(t) p→f(t) for almost all t ∈ [0, τ ] and
∫ τ

0
|f(t)| dt <

∞. A result by Gill (1983) says that (2.27) holds uniformly in t if, for all
δ > 0, there exists a kδ with

∫ τ

0
kδ(t) dt <∞ such that

lim
n→∞

inf P (|X(n)(s)| ≤ kδ(s) for all s) ≥ 1 − δ. (2.28)

We refer to (2.28) as Gill’s condition.
A related dominated convergence theorem says that with 0 ≤ Xn(s) ≤

Yn(s) for s ∈ [0, τ ] and with ν a measure such that

Yn(s) p→Y (s), Xn(s) p→Y (s)

for ν almost all s and∫
Yn(s)dν p→

∫
Y (s)dν <∞ (a.e)

then ∫
Xn(s)dν p→

∫
X(s)dν.

The delta-method and its equivalent functional version are very useful for
deriving the asymptotic distribution in the case where a function (func-
tional) is applied to a random-vector (process) that converges in distribu-
tion.

The simple version states that if the p-dimensional random vector’s Xn,
X and fixed μ satisfy that

n1/2(Xn − μ) D→ X,

then if f is differentiable (f : R
p → R

q) at μ with derivative ḟ(μ) (a p× q
matrix function), it follows that

n1/2(f(Xn) − f(μ)) D→ ḟ(μ)X.

This can be extended to functional spaces by the concept of Hadamard
differentiability (Andersen et al., 1993). Consider the functional spaces B =
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D[0, τ ]p and B′ = D[0, τ ]q and let f : B → B′ with derivative ḟ(μ) at μ (a
continuous linear map, ḟ(μ) : B → B′) such that

an(f(μ+ a−1
n hn) − f(μ)) → ḟ(μ) · h

for all real sequences an → ∞ and all convergent sequences hn → h in
B. The mapping f is then said to be Hadamard differentiable at μ. If Xn

and X are processes in B, μ is a fixed point in B and f is Hadamard
differentiable at μ, it then follows that

n1/2(f(Xn) − f(μ)) D→ ḟ(μ) ·X.

The functional delta theorem can obviously be defined for all Banach spaces
and one typical application is one where the p-dimensional process Bn and
the q-dimensional vector θn jointly converge such that

n1/2(Bn − b, θn − μ) D→ (X1, X2)

and then
n1/2(f(Bn, θn) − f(b, μ)) D→ḟ(b, μ) · (X1, X2)

for differentiable f .
We close this section by briefly mentioning the conditional multiplier cen-

tral limit theorem. Suppose that X1, · · · , Xn are i.i.d. real-valued random
variables and G1, · · · , Gn are independent standard normals independent
of X1, · · · , Xn. Then if

n−1/2
n∑

i=1

Xi
D→ U

it follows from the conditional multiplier central limit theorem that also

n−1/2
n∑

i=1

GiXi
D→ U,

under suitably conditions (van der Vaart & Wellner, 1996) given almost
every sequence of X1, · · · , Xn.

One practical use of this is that when Xi are the residuals from some
regression model then it will often also be true that

n−1/2
n∑

i=1

GiX̂i
D→ U,

where X̂i are estimated based on the data, and this result can also be ex-
panded to functional cases where for example Xi is a residual process on
D[0, τ ]. We will use this approach to approximate the asymptotic distribu-
tion for many estimators as suggested in the counting process situation by
Lin et al. (1993).
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2.6 Exercises

2.1 (Poisson process) A Poisson process N(t) with intensity λ(t) is a
counting process with

Ĺ independent increments and such that

Ĺ N(t)−N(s) follows a Poisson distribution with parameter
∫ t

s λ(u) du
for all 0 ≤ s ≤ t.

(a) Find the compensator Λ of N and put M = N − Λ. Show by a
direct calculation that E(M(t) | Fs) = M(s), where Ft is the internal
history N . Is M a local square integrable martingale?

(b) Find the compensator of M2.

2.2 (Brownian motion and Brownian bridge) The Brownian motion or
the Wiener process is the Gaussian process B such that EB(t) = 0 and
Cov(B(s), B(t)) = s ∧ t for s, t ≥ 0.

(a) Show that B has independent increments. Show that B is a martin-
gale and find the compensator of B2.

The Brownian bridge (tied down Wiener process) B0(t) with t ∈ [0, 1] is the
Gaussian process such that EB0(t) = 0 and Cov(B0(s), B0(t)) = s(1 − t)
for 0 ≤ s ≤ t ≤ 1.

(b) Show that the processes B0(t) and B(t) − tB(1) have the same dis-
tribution on [0, 1].

(c) Show that the processes B(t) and (1 + t)B0(t/(1 + t)) have the same
distribution on [0,∞).

2.3 (Hall-Wellner bands) Consider the time interval [0, τ ]. Let U(t) be a
Gaussian martingale with covariance process V (t), t ∈ [0, τ ]. Show that

U(t)V (τ)1/2[V (τ) + V (t)]−1

has the same distribution as

B0

(
V (t)

V (τ) + V (t)

)
,

where B0 is the standard Brownian bridge.
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2.4 Let M1 and M2 be the martingales associated with the components
of the multivariate counting process N = (N1, N2) with continuous com-
pensators. Show that

〈M1,M2〉 = [M1,M2] = 0.

2.5 Let M = N − Λ be the counting process local martingale. It may be
shown that Λ is locally bounded Meyer (1976), Theorem IV.12.

(a) Show that N is a local submartingale with localizing sequence

Tn = n ∧ sup{t : N(t) < n}.

(b) Show that M is a local square integrable martingale using the below
cited optional stopping theorem.

Theorem. Let M be a Ft-martingale and let T be an Ft-stopping
time. Then (M(t ∧ T ) : t ≥ 0) is a martingale.

2.6 Let M = N − Λ be the counting process local martingale.

(a) Show that EN(t) = EΛ(t) (hint: use the monotone convergence the-
orem).

(b) If EΛ(t) < ∞, then show that M is a martingale by verifying the
martingale conditions.

(c) If supt EΛ(t) < ∞, then show that M is a square integrable martin-
gale.

2.7 Let N(t) = (N1(t), . . . , Nk(t)), t ∈ [0, τ ], be a multivariate counting
process with respect to Ft. It holds that the intensity

λ(t) = (λ1(t), . . . , λk(t))

of N(t) is given (heuristically) as

λh(t) = P (dNh(t) = 1 | Ft−), (2.29)

where dNh(t) = Nh((t+dt)−)−Nh(t−) is the change in Nh over the small
time interval [t, t+ dt).

(a) Let T ∗ be a lifetime with hazard α(t) and define N(t) = I(T ∗ ≤ t).
Use the above (2.29) to show that the intensity of N(t) with respect
to the history σ{N(s) : s ≤ t} is

λ(t) = I(t ≤ T ∗)α(t).
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(b) Let T ∗ be a lifetime with hazard α(t) that may be right-censored at
time C. We assume that T ∗ and C are independent. Let T = T ∗∧C,
Δ = I(T ∗ ≤ C) and N(t) = I(T ≤ t,Δ = 1). Use the above (2.29) to
show that the intensity of N(t) with respect to the history

σ{I(T ≤ s,Δ = 0), I(T ≤ s,Δ = 1) : s ≤ t}

is
λ(t) = I(t ≤ T )α(t).

2.8 Let M(s) and Mε(s) denote the martingales introduced in Example
2.5.1.

(a) Verify the expressions for 〈M〉(s), [M ](s) and 〈Mε〉(s) given in that
example and show that they converge in probability as n → ∞ veri-
fying Gill’s condition (2.28).

(b) From the same example, show that:

sup
s∈[0,t]

|n1/2

∫ s

0

(J(u) − 1)α(u) du| P→ 0.

2.9 (Asymptotic results for the Nelson-Aalen estimator) Let N (n)(t) be
a counting process satisfying the multiplicative intensity structure λ(t) =
Y (n)(t)α(t) with α(t) being locally integrable. The Nelson-Aalen estimator
of
∫ t

0 α(s) ds is

Â(n)(t) =
∫

1
Y (n)(s)

dN (n)(s).

Define A∗(t) =
∫ t

0 J
(n)(s)α(s) ds where J (n)(t) = I(Y (n)(t) > 0).

(a) Show that A(n)(t) −A∗(t) is a local square integrable martingale.

(b) Show that, as n→ ∞

sup
s≤t

|Â(n)(t) −A(t)| P→ 0

provided that∫ t

0

J (n)(s)
Y (n)(s)

α(s) ds P→ 0 and
∫ t

0

(1 − J (n)(s))α(s) ds P→ 0,

as n→ ∞.
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(c) Show that the two conditions given in (b) are satisfied provided that

inf
s≤t

Y (n)(t) P→ ∞, as n→ ∞.

Define σ2(s) =
∫ s

0
α(u)
y(u) du, where y is a non-negative function so that α/y

is integrable over [0, t].

(d) Let n→ ∞. If, for all ε > 0,

n

∫ s

0

J (n)(u)
Y (n)(u)

α(u)I(
∣∣∣∣n1/2 J

(n)(u)
Y (n)(u)

∣∣∣∣ > ε) du P→ 0,

n1/2

∫ s

0

(1−J (n)(u))α(u) du P→ 0 and n

∫ s

0

J (n)(u)
Y (n)(u)

α(u) du P→ σ2(s)

for all s ≤ t, then show that

n1/2(Â(n) −A) D→ U

on D[0, t], where U is a Gaussian martingale with variance function
σ2.

2.10 (Right-censoring by the same stochastic variable) Let T ∗
1 , . . . , T

∗
n be

n i.i.d. positive stochastic variables with hazard function α(t). The observed
data consist of (Ti,Δi)i=1,...n, where Ti = T ∗

i ∧ U , Δi = I(Ti = T ∗
i ). Here,

U is a positive stochastic variable with hazard function μ(t), and assumed
independent of the T ∗

i ’s. Define

N·(t) =
n∑

i=1

Ni(t), Y·(t) =
n∑

i=1

Yi(t)

with Ni(t) = I(Ti ≤ t,Δi = 1) and Yi(t) = I(t ≤ Ti), i = 1, . . . , n.

(a) Show that Â(t) −A∗(t) is a martingale, where

Â(t) =
∫ t

0

1
Y·(s)dN·(s), A∗(t) =

∫ t

0

J(s)α(s) ds.

(b) Show that
sup
s≤t

|Â(s) −A∗(s)| P→ 0

if P (Ti ≤ t) > 0.

(c) Is it also true that Â(t) −A(t) P→ 0?
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2.11 Consider again Example 2.5.2.

(a) Verify the expressions for (n1/2M)ε(s) and 〈Mε〉(s).

(b) Show that 〈Mε〉(s) P→ 0 using Gill’s condition and that

lim
n→∞

∫
An

XdP = 0,

where X is a random variable with E|X | <∞, An is measurable and
An ↘ ∅.

2.12 (Simulations from Example 2.5.3) Consider the simulations in Ex-
ample 2.5.3. Work out the asymptotic bias for the simulations as a function
of time and compare with Figure 2.3.

2.13 (Counting process with discrete compensator) Let N be a counting
process with compensator Λ that may have jumps. Put M = N − Λ.

(a) Show by a direct calculation that

[M ](t) = N(t) − 2
∫ t

0

ΔΛ(s)dN(s) +
∫ t

0

ΔΛ(s)dΛ(s),

where ΔΛ(t) denotes the jumps of Λ(t).

(b) Show that

〈M〉(t) = Λ(t) −
∫ t

0

ΔΛ(s)dΛ(s).
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