# Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>xvii</td>
</tr>
</tbody>
</table>

## 1 Historical Background  
1.1 Biometricians, Saltationists and Mendelians | 1 |
1.2 The Hardy–Weinberg Law | 3 |
1.3 The Correlation Between Relatives | 6 |
1.4 Evolution | 11 |
1.4.1 The Deterministic Theory | 11 |
1.4.2 Non-Random-Mating Populations | 18 |
1.4.3 The Stochastic Theory | 20 |
1.5 Evolved Genetic Phenomena | 31 |
1.6 Modelling | 35 |
1.7 Overall Evolutionary Theories | 38 |

## 2 Technicalities and Generalizations  
2.1 Introduction | 43 |
2.2 Random Union of Gametes | 44 |
2.3 Dioecious Populations | 44 |
2.4 Multiple Alleles | 49 |
2.5 Frequency-Dependent Selection | 54 |
2.6 Fertility Selection | 54 |
2.7 Continuous-Time Models | 57 |
6 Two Loci

6.1 Introduction ................................ 201
6.2 Evolutionary Properties of Mean Fitness .......... 202
6.3 Equilibrium Points ............................. 208
6.4 Special Models ................................. 209
6.5 Modifier Theory ................................. 221
6.6 Two-Locus Diffusion Processes .................... 227
6.7 Associative Overdominance and Hitchhiking ......... 230
6.8 The Evolutionary Advantage of Recombination ..... 235
6.9 Summary ........................................ 239

7 Many Loci

7.1 Introduction ................................ 241
7.2 Notation ....................................... 242
7.3 The Random Mating Case ........................ 243
  7.3.1 Linkage Disequilibrium, Means and Variances .... 243
  7.3.2 Recurrence Relations for Gametic Frequencies .... 245
  7.3.3 Components of Variance ..................... 246
  7.3.4 Particular Models .......................... 249
7.4 Non-Random Mating ........................... 254
  7.4.1 Introduction ................................ 254
  7.4.2 Notation and Theory ........................ 255
  7.4.3 Marginal Fitnesses and Average Effects .......... 256
  7.4.4 Implications ................................ 258
  7.4.5 The Fundamental Theorem of Natural Selection .... 259
  7.4.6 Optimality Principles ...................... 261
7.5 The Correlation Between Relatives ................. 266
7.6 Summary ........................................ 274

8 Further Considerations

8.1 Introduction ................................ 276
8.2 What is Fitness? .............................. 276
8.3 Sex Ratio ...................................... 277
8.4 Geographical Structure ......................... 278
8.5 Age Structure .................................. 282
8.6 Ecological Considerations ....................... 283
8.7 Sociobiology .................................. 285

9 Molecular Population Genetics: Introduction

9.1 Introduction ................................ 288
9.2 Technical Comments .......................... 290
9.3 Infinitely Many Alleles Models: Population Properties . 292
   9.3.1 The Wright–Fisher Model .................... 292
   9.3.2 The Moran Model ........................... 294
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.1</td>
<td>Introduction</td>
<td>297</td>
</tr>
<tr>
<td>9.4.2</td>
<td>The Wright–Fisher Model</td>
<td>298</td>
</tr>
<tr>
<td>9.4.3</td>
<td>The Moran Model</td>
<td>300</td>
</tr>
<tr>
<td>9.5</td>
<td>Sample Properties of Infinitely Many Alleles Models</td>
<td>301</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Introduction</td>
<td>301</td>
</tr>
<tr>
<td>9.5.2</td>
<td>The Wright–Fisher Model</td>
<td>301</td>
</tr>
<tr>
<td>9.5.3</td>
<td>The Moran Model</td>
<td>306</td>
</tr>
<tr>
<td>9.6</td>
<td>Sample Properties of Infinitely Many Sites Models</td>
<td>308</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Introduction</td>
<td>308</td>
</tr>
<tr>
<td>9.6.2</td>
<td>The Wright–Fisher Model</td>
<td>308</td>
</tr>
<tr>
<td>9.6.3</td>
<td>The Moran Model</td>
<td>314</td>
</tr>
<tr>
<td>9.7</td>
<td>Relation Between Infinitely Many Alleles and Infinitely Many Sites Models</td>
<td>316</td>
</tr>
<tr>
<td>9.8</td>
<td>Genetic Variation Within and Between Populations</td>
<td>319</td>
</tr>
<tr>
<td>9.9</td>
<td>Age-Ordered Alleles: Frequencies and Ages</td>
<td>320</td>
</tr>
<tr>
<td>10</td>
<td>Looking Backward in Time: The Coalescent</td>
<td>328</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>328</td>
</tr>
<tr>
<td>10.2</td>
<td>Competing Poisson and Geometric Processes</td>
<td>329</td>
</tr>
<tr>
<td>10.3</td>
<td>The Coalescent Process</td>
<td>330</td>
</tr>
<tr>
<td>10.4</td>
<td>The Coalescent and Its Relation to Evolutionary Genetic Models</td>
<td>331</td>
</tr>
<tr>
<td>10.5</td>
<td>Coalescent Calculations: Wright–Fisher Models</td>
<td>333</td>
</tr>
<tr>
<td>10.6</td>
<td>Coalescent Calculations: Exact Moran Model Results</td>
<td>338</td>
</tr>
<tr>
<td>10.7</td>
<td>General Comments</td>
<td>341</td>
</tr>
<tr>
<td>10.8</td>
<td>The Coalescent and Human Genetics</td>
<td>342</td>
</tr>
<tr>
<td>11</td>
<td>Looking Backward: Testing the Neutral Theory</td>
<td>346</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>346</td>
</tr>
<tr>
<td>11.2</td>
<td>Testing in the Infinitely Many Alleles Models</td>
<td>349</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Introduction</td>
<td>349</td>
</tr>
<tr>
<td>11.2.2</td>
<td>The Ewens and the Watterson Tests</td>
<td>349</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Procedures Based on the Conditional Sample Frequency Spectrum</td>
<td>353</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Age-Dependent Tests</td>
<td>354</td>
</tr>
<tr>
<td>11.3</td>
<td>Testing in the Infinitely Many Sites Models</td>
<td>355</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Introduction</td>
<td>355</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Estimators of ( \theta )</td>
<td>356</td>
</tr>
<tr>
<td>11.3.3</td>
<td>The Tajima Test</td>
<td>358</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Other “Tajima-like” Testing Procedures</td>
<td>361</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Testing for the Signature of a Selective Sweep</td>
<td>362</td>
</tr>
<tr>
<td>11.3.6</td>
<td>Combining Infinitely Many Alleles and Infinitely Many Sites Approaches</td>
<td>364</td>
</tr>
<tr>
<td>11.3.7</td>
<td>Data from Several Unlinked Loci</td>
<td>365</td>
</tr>
<tr>
<td>11.3.8</td>
<td>Data from Unlinked Sites</td>
<td>368</td>
</tr>
</tbody>
</table>
12 Looking Backward in Time: Population and Species Comparisons

12.1 Introduction ........................................ 370
12.1.1 The Reversibility Criterion ...................... 372
12.2 Various Evolutionary Models .......................... 373
12.2.1 The Jukes–Cantor Model .......................... 373
12.2.2 The Kimura Model and Its Generalizations .... 374
12.2.3 The Felsenstein Models .......................... 375
12.3 Some Implications .................................... 377
12.3.1 Introduction ...................................... 377
12.3.2 The Jukes–Cantor Model .......................... 377
12.3.3 The Kimura Model ................................ 380
12.4 Statistical Procedures ................................. 381

Appendix A: Eigenvalue Calculations ....................... 384

Appendix B: Significance Levels for $\hat{F}$ ............... 385

Appendix C: Means and Variances of $\hat{F}$ ................ 386

References .................................................. 387

Author Index ............................................... 409

Subject Index .............................................. 413
Mathematical Population Genetics 1
Theoretical Introduction
Ewens, W.J.
2004, XX, 418 p., Hardcover