Contents

1 Introduction .. 1

2 Random Variables ... 5
 2.1 Random Events and Probability 6
 2.2 Random Variables .. 7
 2.3 Means and Moments ... 10
 2.4 Median and Mode of a Probability Distribution 12
 2.5 Joint Random Variables 13
 2.6 Covariance ... 16
 2.7 Change of Variables ... 18
 2.8 Stochastic Vectors .. 19
 Exercises ... 22

3 Fluctuations and Covariance 25
 3.1 Stochastic Processes ... 25
 3.2 Stationarity and Ergodicity 28
 3.3 Ergodicity in Statistical Physics 32
 3.4 Generalization to Stochastic Fields 34
 3.5 Random Sequences and Cyclostationarity 35
 3.6 Ergodic and Stationary Cases 40
 3.7 Application to Optical Coherence 41
 3.8 Fields and Partial Differential Equations 42
 3.9 Power Spectral Density 44
 3.10 Filters and Fluctuations 46
 3.11 Application to Optical Imaging 50
 3.12 Green Functions and Fluctuations 52
 3.13 Stochastic Vector Fields 56
 3.14 Application to the Polarization of Light 57
 3.15 Ergodicity and Polarization of Light 61
 3.16 Appendix: Wiener–Khinchine Theorem 64
 Exercises ... 66
Contents

4 Limit Theorems and Fluctuations
- 4.1 Sum of Random Variables .. 71
- 4.2 Characteristic Function ... 74
- 4.3 Central Limit Theorem ... 76
- 4.4 Gaussian Noise and Stable Probability Laws 80
- 4.5 A Simple Model of Speckle .. 81
- 4.6 Random Walks ... 89
- 4.7 Application to Diffusion .. 92
- 4.8 Random Walks and Space Dimensions 97
- 4.9 Rare Events and Particle Noise 100
- 4.10 Low Flux Speckle .. 102
- Exercises .. 104

5 Information and Fluctuations
- 5.1 Shannon Information .. 109
- 5.2 Entropy .. 111
- 5.3 Kolmogorov Complexity .. 114
- 5.4 Information and Stochastic Processes 117
- 5.5 Maximum Entropy Principle 119
- 5.6 Entropy of Continuous Distributions 122
- 5.7 Entropy, Propagation and Diffusion 124
- 5.8 Multidimensional Gaussian Case 128
- 5.9 Kullback–Leibler Measure ... 130
- 5.10 Appendix: Lagrange Multipliers 133
- Exercises .. 134

6 Thermodynamic Fluctuations
- 6.1 Gibbs Statistics .. 137
- 6.2 Free Energy .. 141
- 6.3 Connection with Thermodynamics 142
- 6.4 Covariance of Fluctuations 143
- 6.5 A Simple Example .. 146
- 6.6 Fluctuation–Dissipation Theorem 149
- 6.7 Noise at the Terminals of an RC Circuit 153
- 6.8 Phase Transitions .. 158
- 6.9 Critical Fluctuations ... 161
- Exercises .. 163

7 Statistical Estimation
- 7.1 The Example of Poisson Noise 167
- 7.2 The Language of Statistics 169
- 7.3 Characterizing an Estimator 169
- 7.4 Maximum Likelihood Estimator 174
- 7.5 Cramer–Rao Bound in the Scalar Case 177
- 7.6 Exponential Family .. 179
Noise Theory and Application to Physics
From Fluctuations to Information
Réfrégier, P.
2004, XIII, 288 p., Hardcover