Contents

I Steady-State Solutions of the Navier–Stokes Equations:
 Statement of the Problem and Open Questions 1
 Introduction .. 1
 I.1 Flow in Bounded Regions 4
 I.2 Flow in Exterior Regions 8
 I.2.1 Three-Dimensional Flow 10
 I.2.2 Plane Flow ... 14
 I.3 Flow in Regions with Unbounded Boundaries 17

II Basic Function Spaces and Related Inequalities 25
 Introduction .. 25
 II.1 Preliminaries ... 25
 II.1.1 Basic Notation 26
 II.1.2 Banach Spaces and their Relevant Properties 29
 II.1.3 Spaces of Smooth Functions 35
 II.1.4 Classes of Domains and their Properties 36
 II.2 The Lebesgue Spaces \(L^q \) 40
 II.3 The Sobolev Spaces \(W^{m,q} \) and Embedding Inequalities . . . 48
 II.4 Boundary Inequalities and the Trace of Functions of \(W^{m,q} \) 61
 II.5 Further Inequalities and Compactness Criteria in \(W^{m,q} \) ... 69
 II.6 The Homogeneous Sobolev Spaces \(D^{m,q} \) and Embedding Inequalities ... 80
 II.7 Approximation of Functions from \(D^{m,q} \) by Smooth Functions and Characterization of Space \(\tilde{D}^{m,q}_0 \) 102
 II.8 The Normed Dual of \(D^{m,q}_0(\Omega) \). The Spaces \(D^{m,q}_0 \) 109
 II.9 Pointwise behavior at Large Distances of Functions from \(D^{1,q} \) ... 115
 II.10 Boundary Trace of Functions from \(D^{m,q}(\mathbb{R}^n) \) 121
 II.11 Some Integral Transforms and Related Inequalities 125
 II.12 Notes for the Chapter 134
VIII.5 Existence, Uniqueness, and Pointwise Estimates of Solutions in the Whole Space .. 546
VIII.6 On the Pointwise Asymptotic Behavior of Generalized Solutions ... 554
VIII.7 Existence, Uniqueness, and L^q-Estimates. The case $\mathcal{R} = 0$... 560
VIII.8 Existence, Uniqueness, and L^q-Estimates. The Case $\mathcal{R} \neq 0$... 572
VIII.9 Notes for the Chapter ... 578

IX Steady Navier–Stokes Flow in Bounded Domains 583
Introduction .. 583
IX.1 Generalized Solutions. Preliminary Considerations 586
IX.2 On the Uniqueness of Generalized Solutions 591
IX.3 Existence and Uniqueness with Homogeneous Boundary Data ... 596
IX.4 Existence and Uniqueness with Nonhomogeneous Boundary Data ... 602
IX.5 Regularity of Generalized Solutions 621
IX.6 Limit of Infinite Viscosity: Transition to the Stokes Problem ... 640
IX.7 Notes for the Chapter ... 643

X Steady Navier–Stokes Flow in Three-Dimensional Exterior Domains. Irrotational Case 649
Introduction .. 649
X.1 Generalized Solutions. Preliminary Considerations and Regularity Properties .. 653
X.2 On the Validity of the Energy Equation for Generalized Solutions ... 659
X.3 Some Uniqueness Results .. 668
X.4 Existence of Generalized Solutions 676
X.5 On the Asymptotic Behavior of Generalized Solutions: Preliminary Results and Representation Formulas 688
X.6 Global Summability of Generalized Solutions when $v_\infty \neq 0$... 698
X.7 The Energy Equation and Uniqueness for Generalized Solutions when $v_\infty \neq 0$... 705
X.8 The Asymptotic Structure of Generalized Solutions when $v_\infty \neq 0$... 709
X.9 On the Asymptotic Structure of Generalized Solutions when $v_\infty = 0$... 721
X.10 Limit of Vanishing Reynolds Number: Transition to the Stokes Problem .. 731
X.11 Notes for the Chapter ... 742
XIII.3 Existence and Uniqueness of Solutions to
Leray’s Problem .. 910
XIII.4 Decay Estimates for Steady Flow in a Semi–Infinite
Straight Channel ... 916
XIII.5 Flow in an Aperture Domain. Generalized Solutions and
Related Properties ... 926
XIII.6 Energy Equation and Uniqueness for Flows in an
Aperture Domain ... 930
XIII.7 Existence and Uniqueness of Flows in an
Aperture Domain ... 935
XIII.8 Global Summability of Generalized Solutions for Flow
in an Aperture Domain 949
XIII.9 Asymptotic Structure of Generalized Solutions for Flow
in an Aperture Domain 958
XIII.10 Notes for the Chapter 970

Bibliography .. 975

Index ... 1009
An Introduction to the Mathematical Theory of the Navier-Stokes Equations
Steady-State Problems
Galdi, G.P.
2011, XIV, 1018 p. 4 illus., Hardcover