Contents

1 Introduction .. 1
 1.1 Redundant Manipulators 1
 1.1.1 Kinematics ... 1
 1.1.2 Redundancy Resolution 1
 1.1.3 Use for Redundancy 2
 1.1.4 Mathematical Solution Methods 3
 1.2 Hyper-Redundant Manipulators 3
 1.3 Mobile Robots ... 5
 1.3.1 Common Types ... 5
 1.3.2 Applications of Mobile Robots 7
 1.4 Autonomous Surface Vessels 8
 1.4.1 Military and Security Applications 8
 1.4.2 Civilian Applications 9
 1.5 Autonomous Helicopters 10
 1.5.1 Research Platforms 10
 1.5.2 Civilian Applications 12
 1.5.3 Security and Military Applications 12
 1.5.4 Mathematical Models and Methods 13
 1.6 Summary ... 13

2 Redundant Manipulators .. 15
 2.1 Introduction ... 15
 2.1.1 Kinematics of Redundant Manipulators 16
 2.2 Redundancy Resolution at the Velocity Level 20
 2.2.1 Exact Solutions 20
 2.2.2 Approximate Solution Methods 26
 2.3 Redundancy Resolution at the Position Level 30
 2.4 Joint Limit Avoidance and Obstacle Avoidance 34
 2.4.1 Joint Limit Avoidance (JLA) 34
 2.4.2 Obstacle Avoidance 42
 2.5 Summary ... 48
 Problems .. 48

xiii
3 Hyper-Redundant Manipulators ... 51
 3.1 Introduction .. 51
 3.2 Parameterization of the Backbone Curve 52
 3.2.1 Workspace Considerations .. 56
 3.3 Fitting Methods ... 57
 3.3.1 Constraint Least Square Fitting Method (CLSFM) 57
 3.3.2 Recursive Fitting Method (RFM) 63
 3.3.3 Comparison Between the CLSFM and the RFM 69
 3.4 Inverse Velocity Propagation .. 70
 3.4.1 Velocity of a Point on the Backbone Curve 70
 3.4.2 Linear Velocity of Joints Located on the
 Backbone Curve .. 74
 3.4.3 Joint Angular Velocities .. 76
 3.4.4 Singularity Considerations in Inverse Velocity
 Propagation ... 77
 3.5 Summary ... 78
Problems .. 78

4 Obstacle Avoidance Using Harmonic Potential Functions 81
 4.1 Introduction .. 81
 4.2 Potential Theory and Harmonic Functions 83
 4.2.1 Properties of Harmonic functions 83
 4.3 Two-Dimensional Harmonic Potential Functions 84
 4.3.1 Potential of a Point Source or a Point Sink 85
 4.3.2 Potential of a Uniform Flow ... 86
 4.3.3 Potential of a Line Segment (a Panel) 88
 4.3.4 Superposition of Potentials ... 90
 4.3.5 Multiple Line Obstacles .. 93
 4.3.6 Uniform Flow ... 98
 4.3.7 Goal Sink ... 98
 4.4 Two-Dimensional Robust Harmonic Potential Field 102
 4.5 Path Planning for a Single Mobile Robot 105
 4.5.1 Algorithm for a Single Robot 105
 4.6 Path Planning for Multiple Mobile Robots 106
 4.6.1 Algorithm for Multiple Robots 108
 4.7 Structural Local Minimum and Stagnation Points 111
 4.8 Three-Dimensional Harmonic Potential Functions 111
 4.8.1 Uniform Flow ... 111
 4.8.2 Goal Sink ... 112
 4.8.3 Spatial Panel ... 114
 4.9 Three-Dimensional Robust Harmonic Potential Field 119
 4.10 Path Planning for Aerial Robots or Hyper-Redundant
 Manipulators .. 123
 4.10.1 Algorithm for an Aerial Robot 123
5 Control of Manipulators .. 131
 5.1 Introduction .. 131
 5.2 Evolving Control Requirements 131
 5.3 General Dynamic Model ... 132
 5.3.1 Standard Second-Order Form 132
 5.3.2 Standard First-Order Form 134
 5.4 Position Control ... 135
 5.5 Trajectory-Tracking Control 139
 5.5.1 Feedback Linearization 140
 5.5.2 Robust Control ... 146
Problems ... 159

6 Mobile Robots .. 163
 6.1 Introduction .. 163
 6.2 Kinematic Models of Mobile Robots 163
 6.2.1 Hilare Mobile Robots ... 163
 6.2.2 Car-Like Mobile Robots 166
 6.3 Trajectory-Tracking Control Based on Kinematic Models .. 168
 6.3.1 Hilare-Type Mobile Robots 168
 6.3.2 Car-Like Mobile Robots 175
 6.4 Formation Control for Hilare Mobile Robots 182
 6.4.1 Geometrical Leader-Follower Formation Schemes ... 183
 6.4.2 Design of the \(l - \alpha \) Controller 183
 6.4.3 Design of the \(l - l \) Controller 188
 6.5 Dynamics of Mobile Robots .. 194
 6.5.1 Hilare-Type Mobile Robots 194
 6.6 Trajectory-Tracking Control Based on Dynamic Models ... 201
 6.6.1 Hilare-Type Mobile Robots 202
Problems ... 217

7 Autonomous Surface Vessels ... 221
 7.1 Introduction .. 221
 7.2 Dynamics of a Surface Vessel 222
 7.3 The Control Point Concept for Underactuated Vehicles 225
 7.3.1 The Role of the Control Point 225
 7.4 Zero-Dynamics Stability for a Surface Vessel 226
 7.4.1 Stability in Case of General Motions with Constant Speed . 228
 7.4.2 Equilibrium Point for Circular and Linear Motions with Constant Speed . 229
 7.4.3 Permissible Practical Motions 230
7.5 Trajectory-Tracking Controller Design 230
 7.5.1 The Input–Output Relations ... 231
 7.5.2 Feedback Linearization ... 232
 7.5.3 Robust Control Using the Sliding Mode Method 237
7.6 Formation Control for Surface Vessels 244
 7.6.1 Geometrical Leader-Follower Formation Schemes 244
 7.6.2 Design of the $l - \alpha$ Controller 245
 7.6.3 Design of the $l - l$ Controller 252
 7.6.4 Implementation Notes .. 256
7.7 Summary .. 260
Problems ... 260

8 Autonomous Helicopters .. 263
 8.1 Introduction ... 263
 8.2 A 6-DOF Dynamic Model of a Helicopter 264
 8.3 Position Control for Autonomous Helicopters 267
 8.3.1 The Hover Trimming Angles 268
 8.3.2 The Longitudinal and Lateral Control Law 270
 8.3.3 The Latitude and Altitude Control Law 271
 8.4 The Control Point Concept for Underactuated Vehicles 275
 8.4.1 The Role of the Control Point 276
 8.5 Robust Trajectory-Tracking Control for Autonomous Helicopters . 277
 8.5.1 The Input–Output Equations 278
 8.5.2 Robust Control Using the Sliding Mode Method 280
 8.6 Leader-Follower Formation Control for Autonomous Helicopters . 287
 8.6.1 Formation Control Schemes 289
 8.6.2 Designing the Sliding Mode Control Law 300
Problems ... 312

A Mathematics .. 319
 A.1 Null Space ... 319
 A.2 Rank ... 320
 A.3 Singular Value Decomposition (SVD) 320
 A.3.1 Computing SVD .. 321
 A.4 Pseudo-Inverse for a Rectangular Matrix 323
 A.5 Bisection Method ... 323

B Control Methods Review .. 325
 B.1 Feedback Linearization ... 325
 B.2 Sliding Mode Control .. 326

References ... 331

Index ... 337
Autonomous Robots
Modeling, Path Planning, and Control
Fahimi, F.
2009, XVIII, 340 p. 86 illus., Hardcover
ISBN: 978-0-387-09537-0