Contents

Preface xiii

Part I—Fabrication

Chapter 1: Introduction 3

1.1 What are MEMS? 3
1.2 Why MEMS? 4
 1.2.1 Low cost, redundancy and disposability 4
 1.2.2 Favorable scalings 5
1.3 How are MEMS made? 8
1.4 Roadmap and perspective 12

Essay: The Role of Surface to Volume Atoms as Magnetic Devices Miniaturize 12

Chapter 2: The substrate and adding material to it 17

2.1 Introduction 17
2.2 The silicon substrate 17
 2.2.1 Silicon growth 17
 2.2.2 It’s a crystal 19
 2.2.3 Miller indices 20
 2.2.4 It’s a semiconductor 24
2.3 Additive technique: Oxidation 35
 2.3.1 Growing an oxide layer 35
 2.3.2 Oxidation kinetics 37
2.4 Additive technique: Physical vapor deposition 40
 2.4.1 Vacuum fundamentals 41
 2.4.2 Thermal evaporation 46
 2.4.3 Sputtering 51
2.5 Other additive techniques 57
2.5.1 Chemical vapor deposition 57
2.5.2 Electrodeposition 58
2.5.3 Spin casting 58
2.5.4 Wafer bonding 58

Essay: Silicon Ingot Manufacturing 59

Chapter 3: Creating and transferring patterns—Photolithography 65

3.1 Introduction 65
3.2 Keeping it clean 66
3.3 Photoresist 69
 3.3.1 Positive resist 69
 3.3.2 Negative resist 70
3.4 Working with resist 71
 3.4.1 Applying photoresist 71
 3.4.2 Exposure and pattern transfer 72
 3.4.3 Development and post-treatment 77
3.5 Masks 79
3.6 Resolution 81
 3.6.1 Resolution in contact and proximity printing 81
 3.6.2 Resolution in projection printing 82
 3.6.3 Sensitivity and resist profiles 84
 3.6.4 Modeling of resist profiles 86
 3.6.5 Photolithography resolution enhancement technology 87
 3.6.6 Mask alignment 88
3.7 Permanent resists 89

Essay: Photolithography—Past, Present and Future 90

Chapter 4: Creating structures—Micromachining 95

4.1 Introduction 95
4.2 Bulk micromachining processes 96
 4.2.1 Wet chemical etching 96
 4.2.2 Dry etching 106
4.3 Surface micromachining 108
 4.3.1 Surface micromachining processes 109
 4.3.2 Problems with surface micromachining 111
 4.3.3 Lift-off 112
4.4 Process integration 113
 4.4.1 A surface micromachining example 115
Chapter 5: Solid mechanics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>131</td>
</tr>
<tr>
<td>5.2 Fundamentals of solid mechanics</td>
<td>131</td>
</tr>
<tr>
<td>5.2.1 Stress</td>
<td>132</td>
</tr>
<tr>
<td>5.2.2 Strain</td>
<td>133</td>
</tr>
<tr>
<td>5.2.3 Elasticity</td>
<td>135</td>
</tr>
<tr>
<td>5.2.4 Special cases</td>
<td>138</td>
</tr>
<tr>
<td>5.2.5 Non-isotropic materials</td>
<td>139</td>
</tr>
<tr>
<td>5.2.6 Thermal strain</td>
<td>141</td>
</tr>
<tr>
<td>5.3 Properties of thin films</td>
<td>142</td>
</tr>
<tr>
<td>5.3.1 Adhesion</td>
<td>142</td>
</tr>
<tr>
<td>5.3.2 Stress in thin films</td>
<td>142</td>
</tr>
<tr>
<td>5.3.3 Peel forces</td>
<td>149</td>
</tr>
</tbody>
</table>

Part II—Applications

Chapter 6: Thinking about modeling

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 What is modeling?</td>
<td>157</td>
</tr>
<tr>
<td>6.2 Units</td>
<td>158</td>
</tr>
<tr>
<td>6.3 The input-output concept</td>
<td>159</td>
</tr>
<tr>
<td>6.4 Physical variables and notation</td>
<td>162</td>
</tr>
<tr>
<td>6.5 Preface to the modeling chapters</td>
<td>163</td>
</tr>
</tbody>
</table>

Chapter 7: MEMS transducers—An overview of how they work

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 What is a transducer?</td>
<td>167</td>
</tr>
<tr>
<td>7.2 Distinguishing between sensors and actuators</td>
<td>168</td>
</tr>
<tr>
<td>7.3 Response characteristics of transducers</td>
<td>171</td>
</tr>
<tr>
<td>7.3.1 Static response characteristics</td>
<td>172</td>
</tr>
<tr>
<td>7.3.2 Dynamic performance characteristics</td>
<td>173</td>
</tr>
<tr>
<td>7.4 MEMS sensors: principles of operation</td>
<td>178</td>
</tr>
</tbody>
</table>
7.4.1 Resistive sensing 178
7.4.2 Capacitive sensing 181
7.4.3 Piezoelectric sensing 182
7.4.4 Resonant sensing 184
7.4.5 Thermoelectric sensing 186
7.4.6 Magnetic sensing 189
7.5 MEMS actuators: principles of operation 193
7.5.1 Capacitive actuation 193
7.5.2 Piezoelectric actuation 194
7.5.3 Thermo-mechanical actuation 196
7.5.4 Thermo-electric cooling 201
7.5.5 Magnetic actuation 202
7.6 Signal conditioning 204
7.7 A quick look at two applications 206
7.7.1 RF applications 207
7.7.2 Optical applications 207

Chapter 8: Piezoresistive transducers 211

8.1 Introduction 211
8.2 Modeling piezoresistive transducers 212
 8.2.1 Bridge analysis 213
 8.2.2 Relating electrical resistance to mechanical strain 215
8.3 Device case study: Piezoresistive pressure sensor 221

Chapter 9: Capacitive transducers 231

9.1 Introduction 231
9.2 Capacitor fundamentals 232
 9.2.1 Fixed-capacitance capacitor 232
 9.2.2 Variable-capacitance capacitor 234
 9.2.3 An overview of capacitive sensors and actuators 236
9.3 Modeling a capacitive sensor 239
 9.3.1 Capacitive half-bridge 239
 9.3.2 Conditioning the signal from the half-bridge 243
 9.3.3 Mechanical subsystem 246
9.4 Device case study: Capacitive accelerometer 250
Chapter 10: Piezoelectric transducers

10.1 Introduction 255
10.2 Modeling piezoelectric materials 256
10.3 Mechanical modeling of beams and plates 261
 10.3.1 Distributed parameter modeling 261
 10.3.2 Statics 262
 10.3.3 Bending in beams 268
 10.3.4 Bending in plates 274
10.4 Case study: Cantilever piezoelectric actuator 276

Chapter 11: Thermal transducers

11.1 Introduction 283
11.2 Basic heat transfer 284
 11.2.1 Conduction 286
 11.2.2 Convection 288
 11.2.3 Radiation 289
11.3 Case study: Hot-arm actuator 294
 11.3.1 Lumped element model 295
 11.3.2 Distributed parameter model 300
 11.3.3 FEA model 306

Essay: Effect of Scale on Thermal Properties 310

Chapter 12: Introduction to microfluidics

12.1 Introduction 317
12.2 Basics of fluid mechanics 319
 12.2.1 Viscosity and flow regimes 320
 12.2.2 Entrance lengths 324
12.3 Basic equations of fluid mechanics 325
 12.3.1 Conservation of mass 325
 12.3.2 Conservation of linear momentum 326
 12.3.3 Conservation equations at a point: Continuity and Navier-Stokes equations 329
12.4 Some solutions to the Navier-Stokes equations 337
 12.4.1 Couette flow 337
 12.4.2 Poiseuille flow 339
12.5 Electro-osmotic flow 339
 12.5.1 Electrostatics 340
12.5.2 Ionic double layers 346
12.5.3 Navier-Stokes with a constant electric field 355
12.6 Electrophoretic separation 357

Essay: Detection Schemes Employed in Microfluidic Devices for Chemical Analysis 362

Part III—Microfabrication laboratories

Chapter 13: Microfabrication laboratories 371

13.1 Hot-arm actuator as a hands-on case study 371
13.2 Overview of fabrication of hot-arm actuators 372
13.3 Cleanroom safety and etiquette 375
13.4 Experiments
 Experiment 1: Wet oxidation of a silicon wafer 377
 Experiment 2: Photolithography of sacrificial layer 384
 Experiment 3: Depositing metal contacts with evaporation 388
 Experiment 4: Wet chemical etching of aluminum 392
 Experiment 5: Plasma ash release 395
 Experiment 6: Characterization of hot-arm actuators 397

Appendix A: Notation 405

Appendix B: Periodic table of the elements 411

Appendix C: The complimentary error function 413

Appendix D: Color chart for thermally grown silicon dioxide 415

Glossary 417

Subject Index 439
Introductory MEMS
Fabrication and Applications
Adams, Th.M.; Layton, R.A.
2010, XVI, 444 p., Hardcover