This is the second edition of this advanced textbook written for scientists who require further training in femtosecond science. Four years after publication of the first edition, femtosecond science has overcome new challenges and new application fields have become mature. It is necessary to take into account these new developments. Two main topics merged during this period that support important scientific activities: attosecond pulses are now generated in the X-UV spectral domain, and coherent control of chemical events is now possible by tailoring the shape of femtosecond pulses. To update this advanced textbook, it was necessary to introduce these fields; two new chapters are in this second edition: “Coherent Control in Atoms, Molecules, and Solids” (Chap. 11) and “Attosecond Pulses” (Chap. 12) with well-documented references.

Some changes, addenda, and new references are introduced in the first edition’s ten original chapters to take into account new developments and update this advanced textbook which is the result of a scientific adventure that started in 1991. At that time, the French Ministry of Education decided that, in view of the growing importance of ultrashort laser pulses for the national scientific community, a Femtosecond Centre should be created in France and devoted to the further education of scientists who use femtosecond pulses as a research tool and who are not specialists in lasers or even in optics.

After proposals from different institutions, Université Bordeaux I and our laboratory were finally selected to ensure the success of this new centre. Since the scientists involved were located throughout France, it was decided that the training courses should be concentrated into a short period of at least 5 days. It is certainly a challenge to give a good grounding in the science of femtosecond pulses in such a short period to scientists who do not necessarily have the required scientific background and are in some cases involved only as users of these pulses as a tool. To start, we contacted well-known specialists from the French femtosecond community; we are very thankful that they showed enthusiasm and immediately started work on this fascinating project.
Our adventure began in 1992 and each year since, generally in spring, we have organized a one-week femtosecond training course at the Bordeaux University. Each morning of the course is devoted to theoretical lectures concerning different aspects of femtosecond pulses; the afternoons are spent in the laboratory, where a very simple experimental demonstration illustrates each point developed in the morning lectures. At the end of the afternoon, the saturation threshold of the attendees is generally reached, so the evenings are devoted to discovering Bordeaux wines and vineyards, which helps the otherwise shy attendees enter into discussions concerning femtosecond science.

A document including all the lectures is always distributed to the participants. Step by step this document has been improved as a result of feedback from the attendees and lecturers, who were forced to find pedagogic answers to the many questions arising during the courses. The result is a very comprehensive textbook that we decided to make available to the wider scientific community; i.e., the result is this book.

The people who will gain the most from this book are the scientists (graduate students, engineers, researchers) who are not necessarily trained as laser scientists but who want to use femtosecond pulses and/or gain a real understanding of this tool. Laser specialists will also find the book useful, particularly if they have to teach the subject to graduate or PhD students. For every reader, this book provides a simple progressive and pedagogic approach to this field. It is particularly enhanced by the descriptions of basic experiments or exercises that can be used for further study or practice.

The first chapter simply recalls the basic laser principles necessary to understand the generation process of ultrashort pulses. The second chapter is a brief introduction to the basics behind the experimental problems generated by ultrashort laser pulses when they travel through different optical devices or samples. Chapter 3 describes how ultrashort pulses are generated independently of the laser medium. In Chaps. 4 and 5 the main laser sources used to generate ultrashort laser pulses and their characteristics are described. Chapter 6 presents the different methods currently used to characterize these pulses, and Chap. 7 describes how to change these characteristics (pulse duration, amplification, wavelength tuning, etc.). The rest of the book is devoted to applications, essentially the different experimental methods based on the use of ultrashort laser pulses. Chapter 8 describes the principal spectroscopic methods, presenting some typical results, and Chap. 9 addresses mainly the problems that may arise when the pulse duration is as short as the coherence time of the sample being studied. Chapter 10 describes typical applications of ultrashort laser pulses for the characterisation of electronic devices and the electromagnetic pulses generated at low frequency. Chapter 11 is an overview of the coherent control physical processes making it possible to control evolution channels in atoms, molecules and solids. Several examples of oriented reactions in this chapter illustrate the possible applications of such a technique. Chapter 12 introduces the attosecond pulse generation by femtosecond pulse-matter interaction. It is designed for a best understanding of the physics
principles sustaining attosecond pulse creation as well as the encountered difficulties in such processes.

I would like to acknowledge all persons and companies whose names do not directly appear in this book but whose participation has been essential to the final goal of this adventure. My colleague Gediminas Jonusauskas was greatly involved in the design of the experiments presented during the courses and at the end of the chapters in this book. Danièle Hulin, Jean-René Lalanne and Arnold Migus gave much time during the initial stages, particularly in writing the first version of the course document. The publication of this book would not have been possible without their important support and contribution. My colleagues Eric Freysz, François Dupuy, Frederic Adamietz and Patricia Segonds also participated in the organization of the courses, as did the post-doc and PhD students Anatoli Ivanov, Corinne Rajchenbach, Emmanuel Abraham, Bruno Chassagne and Benoit Lourdelet.

Essential financial support and participation in the courses, particularly by the loan of equipment, came from the following laser or optics companies: B.M. Industries, Coherent France, Hamamatsu France, A.R.P. Photonetics, Spectra-Physics France, Optilas, Continuum France, Princeton Instruments SA and Quantel France.

I hope that every reader will enjoy reading this book. The best result would be if they conclude that femtosecond pulses are wonderful tools for scientific investigation and want to use them and know more.

Bordeaux, April 2004

Claude Rullière
Femtosecond Laser Pulses
Principles and Experiments
Rulliere, C. (Ed.)
2005, XVI, 426 p., Hardcover