Contents

Preface and Introduction

<table>
<thead>
<tr>
<th>1 Introduction: Applications and Issues</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Outline of Chapter</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The Robbins–Monro Algorithm</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2 Finding the Zeros of an Unknown Function</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3 Best Linear Least Squares Fit</td>
<td>8</td>
</tr>
<tr>
<td>1.1.4 Minimization by Recursive Monte Carlo</td>
<td>12</td>
</tr>
<tr>
<td>1.2 The Kiefer–Wolfowitz Procedure</td>
<td>14</td>
</tr>
<tr>
<td>1.2.1 The Basic Procedure</td>
<td>14</td>
</tr>
<tr>
<td>1.2.2 Random Directions</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Extensions of the Algorithms</td>
<td>19</td>
</tr>
<tr>
<td>1.3.1 A Variance Reduction Method</td>
<td>19</td>
</tr>
<tr>
<td>1.3.2 Constraints</td>
<td>21</td>
</tr>
<tr>
<td>1.3.3 Averaging of the Iterates: “Polyak Averaging”</td>
<td>22</td>
</tr>
<tr>
<td>1.3.4 Averaging the Observations</td>
<td>22</td>
</tr>
<tr>
<td>1.3.5 Robust Algorithms</td>
<td>23</td>
</tr>
<tr>
<td>1.3.6 Nonexistence of the Derivative at Some (\theta)</td>
<td>24</td>
</tr>
<tr>
<td>1.3.7 Convex Optimization and Subgradients</td>
<td>25</td>
</tr>
<tr>
<td>1.4 A Lagrangian Algorithm for Constrained Function Minimization</td>
<td>26</td>
</tr>
</tbody>
</table>
2 Applications

2.0 Outline of Chapter ... 29
2.1 An Animal Learning Model 31
2.2 A Neural Network ... 34
2.3 State-Dependent Noise 37
2.4 Learning Optimal Controls 40
 2.4.1 Q-Learning ... 41
 2.4.2 Approximating a Value Function 44
 2.4.3 Parametric Optimization of a Markov Chain
 Control Problem ... 48
2.5 Optimization of a GI/G/1 Queue 51
 2.5.1 Derivative Estimation and Infinitesimal Perturbation
 Analysis: A Brief Review 52
 2.5.2 The Derivative Estimate for the
 Queueing Problem ... 54
2.6 Passive Stochastic Approximation 58
2.7 Learning in Repeated Stochastic Games 59

3 Signal Processing, Communications, and Control

3.0 Outline of Chapter ... 63
3.1 Parameter Identification and Tracking 64
 3.1.1 The Classical Model 64
 3.1.2 ARMA and ARMAX Models 68
3.2 Tracking Time Varying Systems 69
 3.2.1 The Algorithm 69
 3.2.2 Some Data .. 73
3.3 Feedback and Averaging 75
3.4 Applications in Communications Theory 76
 3.4.1 Adaptive Noise Cancellation and
 Disturbance Rejection 77
 3.4.2 Adaptive Equalizers 79
 3.4.3 An ARMA Model, with a Training Sequence 80
3.5 Adaptive Antennas and Mobile Communications 83
3.6 Proportional Fair Sharing 88

4 Mathematical Background

4.0 Outline of Chapter ... 95
4.1 Martingales and Inequalities 96
4.2 Ordinary Differential Equations 101
 4.2.1 Limits of a Sequence of Continuous Functions 101
 4.2.2 Stability of Ordinary Differential Equations 104
4.3 Projected ODE .. 106
4.4 Cooperative Systems and Chain Recurrence 110
 4.4.1 Cooperative Systems 110
 4.4.2 Chain Recurrence 110
5 Convergence w.p.1: Martingale Difference Noise

5.0 Outline of Chapter

5.1 Truncated Algorithms: Introduction

5.2 The ODE Method

5.2.1 Assumptions and the Main Convergence Theorem

5.2.2 Convergence to Chain Recurrent Points

5.3 A General Compactness Method

5.3.1 The Basic Convergence Theorem

5.3.2 Sufficient Conditions for the Rate of Change Condition

5.3.3 The Kiefer–Wolfowitz Algorithm

5.4 Stability and Combined Stability–ODE Methods

5.5 Soft Constraints

5.6 Random Directions, Subgradients, and Differential Inclusions

5.7 Animal Learning and Pattern Classification

5.7.1 The Animal Learning Problem

5.7.2 The Pattern Classification Problem

5.8 Non-Convergence to Unstable Points

6 Convergence w.p.1: Correlated Noise

6.0 Outline of Chapter

6.1 A General Compactness Method

6.1.1 Introduction and General Assumptions

6.1.2 The Basic Convergence Theorem

6.1.3 Local Convergence Results

6.2 Sufficient Conditions

6.3 Perturbed State Criteria

6.3.1 Perturbed Iterates

6.3.2 General Conditions for the Asymptotic Rate of Change

6.3.3 Alternative Perturbations

6.4 Examples of State Perturbation

6.5 Kiefer–Wolfowitz Algorithms

6.6 State-Dependent Noise

6.7 Stability-ODE Methods

6.8 Differential Inclusions

6.9 Bounds on Escape Probabilities

6.10 Large Deviations

6.10.1 Two-Sided Estimates
12 Decentralized Algorithms 395
 12.0 Outline of Chapter 395
 12.1 Examples 397
 12.1.1 Introductory Comments 397
 12.1.2 Pipelined Computations 398
 12.1.3 A Distributed and Decentralized Network Model 400
 12.1.4 Multiaccess Communications 402
 12.2 Real-Time Scale: Introduction 403
 12.3 The Basic Algorithms 408
 12.3.1 Constant Step Size: Introduction 408
 12.3.2 Martingale Difference Noise 410
 12.3.3 Correlated Noise 417
 12.3.4 Analysis for $\epsilon \to 0$ and $T \to \infty$ 419
 12.4 Decreasing Step Size 421
 12.5 State-Dependent Noise 428
 12.6 Rate of Convergence 430
 12.7 Stability and Tightness of the Normalized Iterates 436
 12.7.1 Unconstrained Algorithms 436
 12.8 Convergence for Q-Learning: Discounted Cost 439

References 443

Symbol Index 465

Index 469