CONTENTS

Preface .. xiii

1. Tissue Scarring: Lessons from Wound Healing 1
 Mohammed S. Razzaque, Moussa El-Hallak, Abdallah Azouz
 and Takashi Taguchi
 Wound Healing .. 1
 Fetal Wound Healing .. 2
 Tissue Scarring .. 3

2. Pathological Significance of Renal Expression
 of Proinflammatory Molecules .. 9
 Takashi Wada, Mohammed S. Razzaque, Kouji Matsushima,
 Takashi Taguchi and Hitoshi Yokoyama
 Participants in Renal Inflammation ... 10
 Major Mediators Involved in Renal Inflammation 11
 Leukocyte Trafficking During Renal Inflammation 12
 Chemokine Systems in the Kidney from Acute Injury
 to Renal Scarring: The Chemokine Cascade 12
 The MCP-1/CCL2-TGF-β Axis: A Common Regulatory
 Pathway of Chronic Renal Inflammation Resulting
 in Renal Scarring ... 13
 Molecular Basis of Inflammation in Various Renal Diseases 14
 Effectiveness of Anti-Chemokine/Cytokine Therapy
 and Its Possible Therapeutic Implications in Renal Diseases 21

3. Oxidative Stress, Lipoproteins and Angiotensin II:
 The Unholy Triad in the Pathogenesis of Renal Fibrosis 27
 Jan Galle, Thomas Quaschning and Stefan Seibold
 What Generates Oxidative Stress? ... 28
 Biological Effects of Oxidative Stress 28
 Biological Effects of Oxidative Stress on Renal Fibrosis 28
 Oxidative Stress and Changes in Cell Number and Cell Size 30
 Oxidative Stress and Proteinuria ... 30
 Functional Consequence of Ang II-Induced Oxidative Stress
 in Renal Tissue ... 31
 Lipoproteins and Oxidative Stress .. 31
 Functional Consequence of OxLDL-Induced Oxidative Stress
 in Renal Tissue ... 32

4. Involvement of NF-κB in Renal Inflammation and Sclerosis 38
 Laurent Baud, Bruno Fouqueray, Agnes Bellocq,
 Jean-Philippe Haymann and Julie Peltier
 Structure and Activation Pathways of NF-κB 38
 Origin of NF-κB Activation in Inflammatory Reaction 39
 Monitoring of NF-κB Activation ... 39
 Role of NF-κB in the Development of Renal Inflammation 40
Role of NF-κB in the Development of Renal Fibrosis 40
NF-κB Pathway As a Target for New Anti-Inflammatory
and Anti-Fibrotic Treatments .. 41

5. Low-Density Lipoprotein and Glomerulosclerosis 45
 Hyun Soon Lee
 Effects of Lipoprotein Abnormalities on the Glomerulus
 in Experimental Animals ... 46
 Effects of LDL on Mesangial Cells .. 46
 Effects of LDL on Glomerular Epithelial Cells 53

6. Molecular Developments in the Treatment of Renal Fibrosis 61
 Gavin J. Becker and Tim D. Hewitson
 Initiation ... 62
 Fibrogenesis .. 63
 Treatment Options Available and Developing 66
 Future Perspectives ... 70

7. Myocardial Infarction and Cardiac Fibrogenesis 77
 Shozo Kusachi and Yoshifumi Ninomiya
 Cellular and Molecular Events after Induction
 of the Myocardial Infarction ... 78
 ECM Assembly .. 81
 ECM Components of Basement Membrane 83
 Proteoglycans ... 84
 Matrix Proteins ... 85
 Mediators Affecting ECM Reformation 87
 Noninfarct Zone .. 88
 Intervention in Infarct Fibrogenesis 88

8. Cardiac Fibrosis and Aging ... 97
 Serge Masson, Roberto Latini, Monica Salio and Fabio Fiordaliso
 Age-Dependent Cardiac Fibrosis ... 97
 Why Does Collagen Accumulate in the Aged Myocardium? 99
 Attenuation of Myocardial Stiffness During Aging 100
 Diastolic Dysfunction and Failure 101

9. Matrix Remodeling and Atherosclerosis Effect of Age 104
 Ladislao Robert
 The Genesis of the Disease ... 105
 Impact of Cell Biology .. 105
 Other Etiological Factors .. 106
 Role of Immune Factors .. 107
 Role of Elastolysis .. 107
 Mechanism of Elastolysis .. 108
Role of Lipids and of Calcium ... 110
Nature of Vascular Fibrosis ... 111
Role of Proteoglycans .. 112
Role of Receptors .. 112

10. Molecular and Cellular Aspects of Liver Fibrosis 118
Norifumi Kawada
Stellate Cell As a Principal Player of Liver Fibrosis 118
Novel Therapeutic Strategy for Preventing Liver Fibrosis 119

11. Recent Therapeutic Developments in Hepatic Fibrosis 122
Ichiro Shimizu
Hepatocyte Injury and Oxidative Stress ... 123
HSC Activation and Growth Factors ... 125
Antifibrotic Therapy .. 128

12. Reversibility of Liver Fibrosis: Role of Matrix Metalloproteinases 143
Iao Okazaki, Tetsu Watanabe, Maki Niioka, Yoshihiko Sugiooka and Yutaka Inagaki
Reversibility of Human Liver Fibrosis ... 144
Reversibility of Experimental Liver Fibrosis 145
Biological Collagenase Activity in Recovery Stage of Liver Fibrosis .. 146
Gene Expression of MMPs and TIMPs in Both Progressive Stage of Liver Fibrosis and Its Recovery 148
Stem/Progenitor Cells Expressing MMP-13 mRNA Appear in Recovery from Liver Cirrhosis 152
Different Mechanisms in Recovery from Liver Fibrosis and That from Liver Cirrhosis 153

Wesam Ahmed, Mohammed S. Razzaque and Takashi Taguchi
Apoptosis ... 161
Mechanisms of Apoptosis ... 161
The Intrinsic (Mitochondrial) Death Pathway 162
The Extrinsic (Receptor Mediated) Death Pathway 164
Cross Talk between Pathways ... 165
Bcl-2 Proteins and Apoptosis .. 166
Signal Transduction (MAP Kinase) Pathways and Apoptosis 166
PI3K/AKT Pathway and Apoptosis ... 166
Other Modes of Cell Death .. 168
Paraptosis ... 170
Apoptosis and Tissue Scarring ... 170
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Pulmonary Fibrogenesis: The Role of Apoptosis and Its Clinical Potentials</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Kazuyoshi Kuwano, Naoki Hagimata and Nobuyuki Hara</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inflammatory Mediators</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Growth Factors</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Epithelial Cell Apoptosis and Its Clinical Potentials</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>Oxidant-Mediated Lung Injury in Pulmonary Fibrosis</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Endothelium in Pulmonary Fibrosis</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Epithelial-Fibroblast Interaction in Pulmonary Fibrosis</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Matrix Remodeling in Pulmonary Fibrosis</td>
<td>189</td>
</tr>
<tr>
<td>15</td>
<td>Silica-Induced Inflammatory Mediators and Pulmonary Fibrosis</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Andrea K. Hubbard, Sarah Mowbray, Michael Thibeau and Charles Giardina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silica and Silicosis</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Silica-Induced Lung Injury</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Silica-Induced Mediators in Pulmonary Fibrosis</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>211</td>
</tr>
</tbody>
</table>
Fibrogenesis
Cellular and Molecular Basis
Razzaque, M.S. (Ed.)
2005, XVI, 216 p., Hardcover