Summary
Johnes Müller and Annemarie Polak
Classification and taxonomy of fungi pathogenesis in warm-blooded hosts

The kingdom of fungi is described with emphasis on fungi pathogenesis in warm-blooded hosts. The various growth forms of the most frequent causative agents of fungal infections are described and their classification based on characteristics of their sexual life cycle and on their DNA/RNA pattern is summarized in various tables.

Contents
1 Introduction
2 Morphology
3 Classification
4 Nomenclature
5 Taxonomy
 5.1 Zygomycota
 5.2 Ascomycota
 5.3 Basidiomycota
References

Key Words: Taxonomy, pathogenic fungi, Zygomycota, Ascomycota, Basidiomycota.
Summary
Reinhard Kappe and Dagmar Rimek
Fungal diseases

In this chapter, we present concise reviews on the clinical manifestations of the complete set of human fungal infections known today. Emphasis is given to the clinical symptoms. The classification corresponds to the body sites affected, from systemic to superficial. Within the groups, the order of presentation follows the order of prevalence and overall importance of the fungal infections. Short paragraphs on the ecology of the causative fungi and the epidemiology of the corresponding diseases, including the mode of acquisition, the susceptible population, and the geographical distribution, precede each clinical entity.

Contents
1 Introduction
2 Clinical classification of fungal infections
3 Systemic mycoses with worldwide distribution
 3.1 Candidosis, deep (synonyms: invasive, disseminated, systemic, visceral)
 3.1.1 Epidemiology
 3.2 Cryptococcosis
 3.2.1 Epidemiology
 3.2.2 Clinical manifestations
 3.3 Aspergillosis
 3.3.1 Epidemiology
 3.3.2 Clinical manifestations
 3.4 Zygomycosis (rhinocerebral, pulmonary)
 3.4.1 Epidemiology
 3.4.2 Clinical manifestations
 3.5 Fusariosis
 3.5.1 Epidemiology
 3.5.2 Clinical manifestations
 3.6 Scedosporiosis (Pseudallescheriosis)
 3.6.1 Epidemiology
 3.6.2 Clinical manifestations
 3.7 Pneumocystosis
 3.7.1 Epidemiology
 3.7.2 Clinical manifestations
4 Predominantly endemic deep mycoses
 4.1 Histoplasmosis
 4.1.1 Epidemiology
 4.2 Coccidioidomycosis
 4.2.1 Epidemiology
 4.2.2 Clinical manifestations
 4.3 Blastomycosis
 4.3.1 Epidemiology
 4.3.2 Clinical manifestations
 4.4 Paracoccidioidomycosis
 4.4.1 Epidemiology
 4.4.2 Clinical manifestations
 4.5 Penicilliosis
 4.5.1 Epidemiology
 4.5.2 Clinical manifestations
5 Subcutaneous mycoses
 5.1 Sporotrichosis
 5.1.1 Epidemiology
 5.1.2 Clinical manifestations
5.2 Chromoblastomycosis
5.2.1 Epidemiology
5.2.2 Clinical manifestations
5.3 Phaeohyphomycosis
5.3.1 Epidemiology
5.3.2 Clinical manifestations
5.4 Eumycetoma
5.4.1 Epidemiology
5.4.2 Clinical manifestations
5.5 Basidiobolomycosis
5.5.1 Epidemiology
5.5.2 Clinical manifestations
5.6 Conidiobolomycosis
5.6.1 Epidemiology
5.6.2 Clinical manifestations
5.7 Lobomycosis
5.7.1 Epidemiology
5.7.2 Clinical manifestations
6 Cutaneous mycoses
6.1 Dermatophytosis
6.1.1 Epidemiology
6.1.2 Clinical manifestations
6.2 Candidosis of skin, mucosa, or nails
6.2.1 Epidemiology
6.2.2 Clinical manifestations
7 Superficial mycoses
7.1 Pityriasis versicolor
7.1.1 Epidemiology
7.1.2 Clinical manifestations
7.2 Tinea nigra
7.2.1 Epidemiology
7.2.2 Clinical manifestations
7.3 Black piedra
7.3.1 Epidemiology
7.3.2 Clinical manifestations
7.4 White piedra
7.4.1 Epidemiology
7.4.2 Clinical manifestations
8 Conclusions
9 References

Key Words: Candidosis, cryptococcosis, aspergillosis, zygomycosis, fusariosis, scedosporiosis, pseudallescheriosis, pneumocystosis, histoplasmosis, coccidioidomycosis, blastomycosis, paracoccidioidomycosis, penicilliosis, sporotrichosis, chromoblastomycosis, phaeohyphomycosis, eumycetoma, basidiobolomycosis, conidiobolomycosis, lobomycosis, dermatophytosis, pityriasis versicolor, tinea nigra, white piedra, black piedra, systemic, invasive, cutaneous, subcutaneous, superficial, fungal, mycotic.
Summary
Reinhard Kappe and Dagmar Rimek
Diagnosis of fungal diseases

In this chapter, we focus on diagnostic laboratory methods that are necessary and suitable for providing physicians with a timely and accurate diagnosis of fungal diseases. After discussing some pre-analytical aspects, the complete set of methods, i.e., microscopy, histopathology, culture, antigen detection, DNA detection, and antibody detection, is concisely described. Identification techniques depend on the fungal group involved. Therefore, separate paragraphs are dedicated to the identification of yeasts and filamentous fungi, which include molds, dermatophytes, and dimorphic fungi.

Contents
1 Introduction
2 Principal approaches to the diagnosis of fungal diseases
3 General guidelines for laboratory diagnosis
3.1 Indication for collection of samples
3.2 Types of specimens
3.3 Collection
3.4 Transport and storage
3.5 Processing
3.6 Laboratory safety aspects
3.7 Report of results
3.8 Emergency examinations
4 Direct microscopy
4.1 Wet mount
4.2 Methylene blue stain
4.3 Gram stain
4.4 Calcofluor white stain
4.5 India ink
5 Histopathology
6 Culture and isolation
6.1 Use of multi-purpose, non-selective media and methods
6.2 Specific requirements for fungi
7 Identification of fungal isolates
7.1 Yeasts
7.2 Molds, dermatophytes, and dimorphic fungi
8 Typing of fungal strains
9 Detection of fungal constituents and products
9.1 Antigen
9.2 Metabolites
9.3 DNA
10 Detection of antifungal antibodies
11 Conclusions
References

Key Words: Calcofluor white, Grocott-Gomori, Candida mannan antigen, Aspergillus galactomannan, Cryptococcus glucuronoxylomannan, beta-glucan, real time PCR, mycseroology, PFGE, RAPD; CSF, cerebrospinal fluid; BAL, bronchoalveolar lavage fluid; KOH, potassium hydroxide.
Summary
Annemarie Polak
Antifungal therapy - state of the art at the beginning of the 21st century

The most relevant information on the present state of the art of antifungal chemotherapy is reviewed in this chapter. For dermatomycoses a variety of topical antifungals are available, and safe and efficacious systemic treatment, especially with the fungicidal drug terbinafine, is possible. The duration of treatment can be drastically reduced. Substantial progress in the armamentarium of drugs for invasive fungal infections has been made, and a new class of antifungals, echinocandins, is now in clinical use. The following drugs in oral and/or intravenous formulations are available: the broad spectrum polyene amphotericin B with its new “clothes”; the sterol biosynthesis inhibitors fluconazole, itraconazole, and voriconazole; the glucan synthase inhibitor caspofungin; and the combination partner fluconazole. New therapy schedules have been studied; combination therapy has found a significant place in the treatment of severely compromised patients, and the field of prevention and empiric therapy is fast moving. Guidelines exist nowadays for the treatment of various fungal diseases and maintenance therapy. New approaches interfering with host defenses or pathogenicity of fungal cells are being investigated, and molecular biologists are looking for new targets studying the genomics of pathogenic fungi.

Contents
1 Introduction
2 Superficial mycoses
2.1 Dermatophycomycoses
2.2 Onychomycosis
2.2.1 Oral treatment
2.2.1.1 Terbinafine
2.2.1.2 Itraconazole and fluconazole
2.2.2 Therapy with nail lacquers
2.2.2.1 Amorolfine
2.2.2.2 Ciclopirox/olamine
2.2.3 Combination therapy in onychomycosis
2.3 Pityriasis versicolor and seborrhoeic eczema
2.4 Vaginal candidosis
3 Subcutaneous mycoses
3.1 Madura feet
3.2 Chromomycosis
3.3 Sporotrichosis
4 Systemic mycoses
4.1 The causative agents
4.1.1 Emerging pathogens
4.2 The patient
4.3 The drugs on the market
4.3.1 Amphotericin B, the conventional antifungal
4.3.1.1 Resistance
4.3.1.2 Mode of action
4.3.1.3 Safety and toxicity
4.3.1.4 Therapy
4.3.2 Amph B in new clothes
4.3.2.1 Mode of action
4.3.2.2 Plasma pharmacokinetic
4.3.2.3 Safety and tolerance
4.3.2.4 Efficacy
4.3.3 Fluconazole
4.3.3.1 Mode of action
4.3.3.2 Resistance
4.3.3.3 Safety and tolerance
4.3.3.4 Efficacy
4.3.4 Old imidazoles derivatives: miconazole and ketoconazole
4.3.4.1 Mode of action
4.3.4.2 Miconazole
4.3.4.3 Ketoconazole
4.3.5 Fluconazole
4.3.5.1 Resistance
4.3.5.2 Safety and tolerance
4.3.5.3 Drug interactions
4.3.5.4 Therapeutic indications in opportunistic mycoses
4.3.5.5 Therapeutic indications in endemic mycoses
4.3.6 Itraconazole
4.3.6.1 Resistance
4.3.6.2 Safety and tolerance
4.3.6.3 Drug interactions
4.3.6.4 Therapeutic indications in opportunistic mycoses
4.3.6.6 Therapeutic indications in endemic mycoses
4.3.7 Voriconazole
4.3.7.1 Preclinical data
4.3.7.2 Pharmacokinetics and metabolism
4.3.7.3 Safety and tolerance
4.3.7.4 Drug interactions
4.3.7.5 Therapeutic indications
4.3.8 Caspofungin
4.3.8.1 Preclinical data
4.3.8.2 Pharmacokinetic and metabolism
4.3.8.3 Safety and tolerance
4.3.8.4 Drug interactions
4.3.8.5 Therapeutic indications
4.3.9 Combination therapy
4.3.9.1 Preclinical studies
4.3.9.2 Clinical experience
4.3.10 Immunomodulators
4.4 The methodology: empirical and prophylactic therapy
4.4.1 Empirical therapy
4.4.2 Prophylaxis and preemptive therapy
5 The near future in research and clinics
5.1 Polyenes
5.2 Sterol biosynthesis inhibitors
5.3 Antifungal targeting fungal cell wall
5.3.1 Target: glucan
5.3.2 Target: chitin
5.4 Natural products and new targets
5.4.1 Sodarins
5.5 Virulence
6 Conclusions
References

Key Words: Invasive fungal infections, dermatomycoses, amphotericin B, fluconazole, fluycytosine, itraconazole, voriconazole, caspofungin, terbinafine, ciclopirox, amorolfine.
Summary
Michael Seibold and Kathrin Tintelnort
Susceptibility testing of fungi – current status and open questions

The increase of fungal infections and the improvement of therapeutical options demand reliable antifungal susceptibility testing. *In vitro* susceptibility testing of fungi – in contrast to bacteria – is not yet established as a routine method. The NCCLS (National Committee for Clinical Laboratory Standards) guidelines for susceptibility testing of yeasts (and proposed for hyphomycetes) are most important for standardization. Meanwhile, essential parts of this test procedure are accepted, but it should still be improved. The concept of using only one test medium for all drugs and test organisms is not realized so far. There are also some test situations that prevent the NCCLS standard from being applied. Based on our experience, this article describes the NCCLS methods and their modifications. It places emphasis on lipophilic drugs showing controversies despite standardization. Furthermore, the prediction of MICs on the clinical outcome is discussed. Since there are some pitfalls in testing antifungals, this should be done in experienced laboratories only. The MIC has to be regarded as only one, but an important, factor in the management of fungal diseases. Host-, drug-, and pathogen-specific data should be considered simultaneously.

Contents
1 Introduction
1.1 Need for antifungal susceptibility testing
1.2 Clinical indications for antifungal susceptibility testing
2 Resistance
2.1 Definitions of susceptibility and resistance
2.2 Types of resistance
2.2.1 Primary resistance
2.2.2 Secondary resistance
2.2.3 Clinical resistance
3 Methods of susceptibility testing of yeasts
3.1 The NCCLS M27-A method
3.1.1 Test organisms.
3.1.2 Inoculum
3.1.3 Test medium
3.1.4 Antifungal Agents, Solubilization
3.1.5 Test format and test materials
3.1.6 Incubation time
3.1.7 Incubation temperature
3.1.8 Incubation atmosphere
3.1.9 Reading results
3.1.10 Interpretation of results
3.1.11 Quality control
3.1.12 *In vitro* susceptibility testing of *Cryptococcus neoformans*
3.2 The German standard of susceptibility testing of fungi against antifungal agents (DIN standard, draft version 08/1999)
3.3 The EUCAST method
3.4 Use of complex media for antifungal susceptibility testing
3.4.1 The in-house method of antifungal susceptibility testing of yeasts to azoles at the Robert-Koch Institut Berlin, Germany
3.5 Early standardization of antifungal susceptibility testing of yeasts in Europe
4 Antifungal susceptibility testing of hyphomycetes
4.1 The NCCLS M38-P standard
4.1.1 Test format
4.1.2 Itraconazole testing
4.1.3 Endpoint reading
4.1.4 Inoculum
4.1.5 MICs of quality-control strains
4.1.6 Detection of amphotericin B resistance
4.2 The in-house standard at the Robert Koch-Institut
5. Modifications and alternatives of the NCCLS standards M27-A and M38-P
5.1 Modifications of the standard methods
5.1.1 Use of colorimetric markers
5.1.2 Determination of the MFC (syn. MLC)
5.2 Testing of new azoles and echinocandins
5.3 The agar diffusion test
5.4 The agar dilution test
5.5 Other methods
5.6 Commercial susceptibility tests
5.6.1 Tests covering the full range of antifungal concentrations
5.6.2 Breakpoint tests
5.7 Susceptibility testing of drug combinations
6 Interpretation of the MICs
Acknowledgement
References

Key Words: Antifungal susceptibility testing, standardization, hyphomycetes, yeasts, *in vitro – in vivo* correlation, lipophilic drugs.
Antifungal Agents
Advances and Problems
Jucker, E.M. (Ed.)
2003, VIII, 248 p. 28 illus., Softcover
ISBN: 978-3-7643-6926-2
A product of Birkhäuser Basel