Instructions for Authors

1. (Aims and scope) Applied Biological Chemistry (Appl Biol Chem), launched on December 1960, is a bimonthly journal copublished by the Korean Society for Applied Biological Chemistry (KSABC) and Springer Verlag publishers. The goal of Appl Biol Chem is to promote scientific information interchange among researchers in the field of agricultural chemistry. The journal covers the scientific aspects of 1) biochemistry/molecular biology, 2) natural products/ bioactive compounds/biomedical sciences, 3) agricultural & environmental sciences, 4) food science related to multidisciplinary agriculture. ABCH considers the publication of results using isolated natural compounds, but not plant and food extracts.

2. (Resubmissions) Papers/Manuscripts may be rejected but the authors are encouraged to resubmit the manuscript after additional experimental data, factual errors by a referee, and disagreement with technical or statistical concerns raised by a referee are obtained. Resubmissions must be submitted via the online submission system under "Begin a new submission." The paper must be marked as a resubmission and list the handling editor, manuscript number of the original submission and Appeal Form, in Supplementary Material. Appeals will not be considered at all unless they are submitted with this completed form. Please submit also this form, with your point-by-point response to the referees, to the Applied Biological Chemistry publishing team via journal@ksabc.or.kr. Please note that any new evidence that you wish to include must be submitted with your appeal. We will not consider further appeals after a decision has been made, so any new data you wish to add must be included with the appeal form. This form is intended to help authors efficiently present their arguments for reconsideration of a decision. Please fill out only those sections that apply to your paper. Brevity is greatly encouraged as it will enable us to process your appeal more efficiently. All decisions on appeals are final, without exception.

3. (Form of paper) The papers submitted for publication must not contain any materials that violate any copyright or other personal or proprietary right of any person or entity. The papers are classified into three categories.

 Articles cover full reports of research works that require precise description and clear interpretation of theoretical or experimental works. The word count in the papers should not exceed 5,000 words, and no more than 6 tables and figures are allowed in any combination.

 Notes should report brief results whose immediate availability to the scientific community is deemed important. A note is restricted to four printed pages (approximately 2,000 words in MS word except figures or tables) and has to fulfill the structure of a full length article. The total number of figures and tables should not exceed four.

 Reviews are invited by the Editorial Board. Alternatively, potential authors of a review article should make contact with the Editor-in-Chief to suggest the topic, outline, and a summary statement. Two types are possible of a comprehensive review and a mini-review. A mini-review is a brief summary of developments in fast moving areas related to applied biological chemistry. The basic format for reviews is title page, abstract, introduction, main text, and references. Summary tables and figures dealing with key points should be used liberally. Use headings and subheadings in the main text as needed.

4. (Submission of manuscripts) The manuscripts submitted for publication must be previously unpublished research works. Each paper should be submitted as a computer file written using MS Word with 12-point font, double-spacing, and line numbers. All figures are separately uploaded as gif or jpeg files. Tables should be uploaded as .doc or .xls files. Manuscript is to be submitted through the online Editorial Manager system (https://www.editorialmanager.com/jabc/). If the papers are not written by non-native speaker, the proof of professional editing service should be submitted. All queries relating to the submission should be directed to journal@ksabc.or.kr. For a resubmission of the rejected manuscript, Appeal Form must be uploaded in Supplementary Material and submit also to the Applied Biological Chemistry publishing team via journal@ksabc.or.kr.

The manuscript should be assembled in the following sequence: Title and Authorship (single page) Title page (single page) should include title of the paper without author’s name, an e-mail address of the corresponding author and author affiliation. Abstract and Keywords (single page) Introduction Materials and Methods Results (or Results and Discussion) Discussion References (separated page) Acknowledgment(s) Figure legends Tables (one table per page) Figures (one figure per page) Supplementary Material

5. (Editorial review and revision) Contributors may recommend or exclude potential reviewers on the basis of their knowledge on the subject matter of the paper. Editorial board will decide if the manuscript is to be accepted, rejected or peer-reviewed, based on the following criteria: field of research, scope of work, quality of language usage, adequacy of tables and figures, and observance of format. In addition, all manuscripts will be edited by native English speakers. If necessary, the paper will be further asked to be edited by a native English speaker. Any appeal about the decision might be accepted in a written format. Other forms of appeal will not be accepted or considered. Acceptance of the paper will depend upon its scientific merit and suitability for the journal. The reviewers’ and editor’s suggestions will be conveyed to the corresponding author (henceforth ‘the author’) without identifying the reviewers, and the author will have an opportunity for revision with full, sole responsibility. The revised manuscript must bear a sign ‘REVISED’ on top right of the title page. If a manuscript returned to the author for revision is held longer than eight weeks, the submission will be considered withdrawn, unless a previous arrangement has been made with Editor-in-Chief. Prior to review all manuscripts and a final decision being made, all manuscripts will be screened two times through CrossCheck to verify the integrity of the study, and to identify incidences of plagiarism or dual publication. If any issues are discovered in a manuscript during this screening process, it may subsequently be rejected by the editor regardless of the reviewers' comments, and will likely be forwarded to the editorial committee for a more in depth review of its integrity which may result in the application of further penalties.

6. (Proofs) Galley proofs for an accepted article will be sent to the corresponding author for correction and must be returned within two working day of receipt.

7. (Copyright) For the protection of the Society’s ownership and the original authors’ from misappropriations of their published work, the author(s) agree to a copyright transfer when the manuscript is accepted for publication. Copyright for the published papers belongs to the Society.

8. (Charges) Publication fee is 240,000 Korean won (KSABC
members)/400,000 Korean won (KSABC non-members). Page charges are free up to 4 pages, and for over 4 pages 60,000 Korean won (KSABC members) / 100,000 Korean won (KSABC nonmembers). The actual color and page charges will be notified to the author along with the galley proofs. Request for charge waiver will be considered upon receiving a letter with the justification from the corresponding author. Even if the author chooses black and white printing, electronic version will bear color without charge. And Erratum fee is 100,000 Korean won (KSABC members/non-members) / $90 (Non-Korean authors). Foreign authors who contribute from July 1, 2018 will be charged the cost of publishing papers. Foreign contributors are charged $ 300 per paper.

9. (Ethical consideration) Once accepted, the manuscripts are not allowed to be reproduced in part or whole material without the permission from the journal secretary. The articles are not allowed to be reproduced for commercial purpose without the permission from the journal society. Manuscript dealing with any experimental work on human or animal materials should meet the relevant regulations or requirements imposed by institutional or governmental authorities, and this should be clearly stated in the manuscript. Any unusual hazards inherent in the chemicals, equipment, and procedures used in an investigation should be clearly identified in the manuscript reporting the work.

10. (Reprints) The author is responsible for reprint charge.

11. (Steps and procedures in the academic disciplinary actions taken against plagiarism) When a submitted research article shows a 60% or higher level of plagiarism (excluding the References), the editorial board immediately remits the article to the ABCH Ethics Committee for Plagiarism and the author(s) of the article is requested to submit a verification report. The ABCH Ethics Committee for Plagiarism holds a committee meeting and takes the following disciplinary actions:

I. When the first Similarity Check/Thenticate result for the articles submitted during the life time of the first or corresponding author shows a 60% or higher level of plagiarism, the ABCH Ethics Committee for Plagiarism holds a committee meeting; and the first and the corresponding authors (and not the co-authors) will receive a warning.

II. When the second Similarity Check/Thenticate result for the articles submitted during the life time of the first or corresponding author shows a 60% or higher level of plagiarism, the ABCH Ethics Committee for Plagiarism holds a committee meeting; and the first and corresponding authors (and not the co-authors) will be banned from submitting any academic papers for two years.

III. When the third Similarity Check/Thenticate result for the articles submitted during the life time of the first or corresponding author shows a 60% or higher level of plagiarism, the ABCH Ethics Committee for Plagiarism holds a committee meeting; and the first and corresponding authors (and not the co-authors) will be banned from submitting any academic papers for ten years.

12. (Structure of the ABCH Ethics Committee for Plagiarism) The ABCH Ethics Committee consists of five members, with the Chief Editor as the Chair of the committee and the Vice Chief Editors of the divisions of 1) biochemistry/molecular biology, 2) natural products/bioactive compounds/biomedical sciences, 3) agricultural & environmental sciences, and 4) food science related to multidisciplinary agriculture as the official members of the committee.

Preperation of Manuscripts

13. (Form of character) The font should be used with ‘Times New Roman’.

14. (Style) The authors should present their material with utmost conciseness under the following organization: Title, Abstract, Introduction, Materials and Methods, Results, Discussion, References, and Acknowledgments.

Cover letter must be accompanied by all papers and should clearly present the descriptions about the significance of research work, including its originality, its contribution to new knowledge in the field, and its relevance to the aim and scope of ABCH.

Title and Authorship should include (1) article category, (2) field under which the paper is to be reviewed, (3) title of the paper, (4) a dot (*) after the end of each author’s name (5) list full names of all authors, (6) an e-mail address of the corresponding author, (7) a brief running title (not to exceed 54 characters and spaces). Author affiliation must be footnoted using superscript numbers. The manuscript should present results of independent and cohesive study, thus, numbered series titles are not allowed. The title words, except prepositions and articles, should be properly small letter. Avoid use of abbreviations and acronyms in titles. Molecular formulas (e.g. NaCl) and abbreviations defined in the title are allowed, and avoid words such as ‘Studies on.’ The corresponding author(s) is to be marked by (✉). When more than one first-authors, they are marked with footnote designation. Pagination should start from the title page.

Title page should include the title of the paper without author’s name, an e-mail address of the corresponding author and author affiliation.

Abstract page should be included in a separate page without heading for all forms of papers. It should be written in less 250 words or less for article and less than 150 words for note. It should be suitable for direct inclusion in Current Contents, Chemical Abstracts, etc. Experimental details should not be presented in the abstract. All abbreviations used only once or for the first time must be spelled out.

Keywords are presented in an alphabetical order, and must follow the abstract in the same page. Do not italicize the key words except binomial nomenclature. Avoid use of abbreviations and acronyms.

Abbreviations and Acronyms, if any, should be spelled out the first time it is used, and put in parenthesis after the full name. Terms defined in the abstract should be defined independently in the main text.

Introduction should state (1) the purpose of research and (2) its relation to other works in the field.

Materials and Methods should be described in detail for repetition of the work, and manufacturers or the sources of materials should be cited. Subheading in bold starts without indentation and end with period. It is separated from the text by an empty line. When providing supplier information for material sources, company name and location (city, state (optional), country) should be provided. The accession numbers of any nucleic acid or protein sequences must be provided. All microbial strains should be deposited in publicly accessible culture collections, and the collections and strain numbers should be referred in the manuscript to ensure reproducibility of the experiment by a third party. Voucher specimen number should be recorded for the field-collected materials. Neither third level heading nor numbered heading is allowed.

Results and Discussion should ordinarily be separated. However, they may be combined if a single section presentation is necessary for a more compact presentation. Heading is the same as mentioned above.
References should only include works that are cited in the text and that have been published or accepted for publication. Articles should not cite more than 35 references. Reviews should not cite more than 50 references. Personal communications and unpublished works should only be mentioned in the text. Do not use footnotes or endnotes as a substitute for a reference list. The entries in the list should be numbered consecutively.

Acknowledgment(s) should include list sources of financial or material support and the names of individuals whose contributions were significant but not deserving of authorship.

Citation Reference citations in the text should be identified by numbers in square brackets. Some examples:
1. Negotiation research spans many disciplines [3].
2. This result was later contradicted by Becker and Seligman [5].
3. This effect has been widely studied [1–3, 7].

Journal names should be abbreviated according to the ISI Science Citation Index database. References accepted for publication but not yet published should show the journal name and, if known, the probable year of publication, and state “in press.” The following types of references are not valid for listing: unpublished data, personal communication, a manuscript in preparation or submitted, pamphlets, abstracts, newsletters, etc. Instead, references to such sources should be made parenthetically in the text. Follow the styles shown in examples below:

The names of all authors should be provided.

Supplementary material announces the presence of spectra, chromatograms, figures, tables or detailed experimental procedure, which are not suitable for publication but useful for judgment by the referees and readers’ perusal. The material should be submitted as an electronic file in MS Word (.doc and .rtf), or portable document format (.pdf) and will be published only as an electronic file. Supplementary materials are not page-charged. Authors are especially recommended to submit chromatographic and spectral data of already known compounds. The resubmitted paper must be marked as a resubmission and list the handling editor, manuscript number of the original submission, and Appeal Form, in Supplementary Material. Appeal Form submit also to the Applied Biological Chemistry publishing team via journal@ksabc.or.kr.

15. (Tables and Figures) Tables should be typewritten separately from the text, and each table should have an explanatory title. Avoid constructing a table or a figure of two-point data. Figures and chemical formulas should ordinarily be original drawings prepared with a suitable drawing program. The resolution for images containing pictures should be 300–600 dpi and for line art figures at least 900 dpi. All text and symbols on a figure should be large enough to read easily considering they are to be reduced in size to fit in a single column width (8.5 cm) or two-column width (17.5 cm). Graphs are to be boxed whenever possible. They are cited in the text as ‘Fig. 1’ or ‘Table 1’. Spectra and chromatograms are normally not allowed unless the appearance is deemed absolutely necessary. The spectra can also be submitted as supplementary materials, in which case should be stated in the text: Copies of original spectra (or chromatograms) are available as supplementary material. The figure titles and legends must be grouped in a separate page, not included in the same page with the figures.

16. (Nomenclatures, Units, Abbreviations, and Symbols) Nomenclatures for chemicals and biochemicals should follow the guidelines published by American Chemical Society. SI units (System International d’Unités) should be used whenever possible. Abbreviations and symbols should be used for those recommended by IUPAC and IUBMB (Biochemical Nomenclature and Related Documents, 1978). Symbols of the units should be spaced from the numbers to which they refer, except °C and %.

17. (Manuscript checklist) It is hoped that this list will be useful during the final checking of your manuscript prior to submission to journal for review. Ensure that the following items are present:
- One author designated as corresponding author
- E-mail address of corresponding author
- Abstract should be written in 250 words. Key words are presented in an alphabetical order.
- Page and line numbers
- References are in the correct format for this journal.
- All references mentioned in the Reference list are cited in the text, and vice versa.

18. (Provision) This instruction applies to the manuscripts to be published after July 2018.

19. Special notes for authors for publication of ethics

Plagiarism. The paper that is posted on ABCH publishes original research only, and strictly examines the plagiarism problem including self-plagiarism. As part of that, Springer Verlag publishers use CrossCheck’s iThenticate software to strictly check the similarity with existing published papers. The corresponding author may go through the plagiarism examination at the stage of submitting his / her paper. If the plagiarism rate of the main body excluding the Reference section of the submitted manuscript exceeds 30%, the ABCH journal immediately rejects the review of the submitted manuscript.

Disclosure of conflicts of interest. The sentences of the interests of the paper publication and the financial conflicts that are missing are published together with the manuscript of each paper. In the process of submitting the paper, the author needs to provide this Affidavit on behalf of all authors. This statement should describe all potential prejudices, including lines that can cause conflicts of interest, sources of funding or financial or administrative relationships. The statement will be posted in the final article. If conflicts of interest do not conflict, please write as follows: “The authors declare that there is no conflict of interest.”

Co-authors’ notification. In the process of submitting a paper, the submitter must provide all the co-author’s contact information (name, email address, institution). Authors who submitted manuscripts for publication are responsible for showing that manuscripts have been submitted to all co-authors. To change the manuscript after submission, you must send a
confirmation letter to the editor-in-chief from the author whose author's name was deleted and obtain permission. Also, if you add a new author, you have to go through the same process.
Special notes for authors for publication of ethics

Plagiarism
The paper that is posted on ABCH publishes original research only, and strictly examines the plagiarism problem including self plagiarism. As part of that, Springer-Nature publishers use CrossCheck's iThenticate software to strictly check the similarity with existing published papers. The communication author went through the plagiarism examination at the stage of submitting his / her paper, and if the plagiarism rate of the main body excluding the Reference section of the submitted manuscript exceeds 30%, the ABCH journal immediately rejects the review of the submitted manuscript.

Disclosure of conflicts of interest
The sentences of the interests of the paper publication and the financial conflicts that are missing are published together with the manuscript of each paper. In the process of submitting the paper, the author needs to provide this Affidavit on behalf of all authors. This statement should describe all potential prejudices, including lines that can cause conflicts of interest, sources of funding and financial or administrative relationships. The statement will be posted in the final article. If conflicts of interest do not conflict, please write as follows: "The author of the paper does not declare a competitive fiscal gain."

Co-authors' notification
In the process of submitting a paper, the submitter must provide all the co-author's contact information (name, email address, institution) mandatory. Authors who submitted manuscripts for publication are responsible for showing that manuscripts have been submitted to all co-authors. To change the manuscript after submission, you must send a confirmation letter to the editor-in-chief from the author whose author's name was deleted and obtain permission. Also, if you add a new author, you have to go through the same process.
Antimicrobial agents of 4-methoxysalicylaldehyde isolated from *Periploca sepium* oil against foodborne bacteria: structure-activity relationship

Eun-Young Jeong¹ · Myung-Ji Lee¹ · Min-Seung Kang¹

¹ Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 54896, Republic of Korea

E-mail: kangseon@jbnu.ac.kr
Antimicrobial agents of 4-methoxysalicylaldehyde isolated from *Periploca sepium* oil against foodborne bacteria: structure-activity relationship
Abstract This study was designed to evaluate the antimicrobial activities of 4-methoxysalicylaldehyde isolated from *Periploca sepium* and its derivatives against six foodborne bacteria (*Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, S. sonnei, Staphylococcus intermedius* and *S. aureus*). Essential oil extracted from *P. sepium* roots exhibits strong antimicrobial activity against foodborne bacteria. The antimicrobial compound of *P. sepium* isolated by chromatographic techniques was identified as 4-methoxysalicylaldehyde. In order to compare the antimicrobial activities of 4-methoxysalicylaldehyde and its derivatives (4-hydroxysalicylaldehyde, salicylaldehyde, 3-methoxysalicylaldehyde, 5-methoxysalicylaldehyde, 3-methylsalicylaldehyde, and 5-methylsalicylaldehyde), the MIC test was performed. These activities were exhibited by 4-methoxysalicylaldehyde (MIC 30.1-67.3 μg/mL) followed by 4-hydroxysalicylaldehyde (MIC 41.1-61.5 μg/mL) and 4-methoxysalicylaldehyde (MIC 41.3-92.1 μg/mL) against all tested microorganisms. The results indicate that 4-methoxysalicylaldehyde and its derivatives represent natural antimicrobial alternatives.

Key words Antimicrobial agent ∙ Foodborne bacteria ∙ 4-Methoxysalicylaldehyde ∙ *Periploca sepium*
Introduction

Microbial contamination and food spoilage is one of the causes of foodborne disease, which appears to increase the focus of attention on food safety [1-3]. Infectious diseases including foodborne disease are one of the main causes of global health problems in developing countries [1, 2, 4]. Synthetic preservatives are used for food processing in order to prolong the expiration date and safety of foods. However, the side effects associated with synthetic preservatives and their impact on human health question the stability of synthetic preservatives [2, 5]. In recent years, the role of natural products and growing apprehension about the safety of synthetic antibiotics have stimulated various studies of plant materials [2, 4].

Plant-derived products have been used to manufacture acaricides, insecticides, traditional medicines, and for protection against foodborne pathogens [1, 2, 6, 7]. Plant essential oils and their constituents are potential antimicrobial agents and food preservatives [2, 5, 8, 9]. Such oils represent attractive antimicrobial agents as they reduce the risk of pathogenic bacterial resistance and generally display low toxicities in mammals, unlike synthetic antibiotics or food preservatives [2, 4, 5, 10]. *Periploca sepium* Bunge (Asclepiadaceae), widespread throughout northeastern and southwestern China, has been traditionally used as a Chinese herbal medicine. *P. sepium* roots are also used for treatment of rheumatoid arthritis, cardiac palpitation, shortness of breath and wounds, which is attributed to its oligosaccharides, pregnane glycosides, flavonoids and triterpenoids [11-13]. This study was undertaken with the main objective of identifying active component in *P. sepium* roots, and to investigate the antimicrobial activity of its constituents against six foodborne pathogens.

Materials and methods

Chemicals 4-Hydroxysalicylaldehyde, 3-methoxysalicylaldehyde, 5-methoxysalicylaldehyde, 3-methylsalicylaldehyde, 5-methylsalicylaldehyde and salicylaldehyde were obtained from
Isolation and identification Roots of *P. sepium* were purchased from Jeonju market (Korea). Extracted oil of *P. sepium* roots was obtained through steam distillation for 4 h. The oil yield was 0.24% and stored at 4°C in a refrigerator. Essential oil (4 g) was loaded to silica gel chromatography (70-230 mesh; diameter, 8 × 90 cm; 600 g; Merck, Rahway, NJ, USA) for purification. Essential oil was eluted with ethyl acetate:hexane (0:10 to 10:0, v/v) to obtain five fractions (PS1 to PS5). Five fractions were bioassayed against six foodborne bacteria. The PS3 fraction exhibited strong antimicrobial activity. Active PS3 was re-chromatographed and eluted by multi-step solvent gradients as follows: ethyl acetate:hexane (2:8 to 5:5, v/v). A Jaigel GS series column (GS-310 500 mm plus GS-310 300mm) was connected to a recycling prep HPLC (Japan Analytical Industry Co. Ltd., Tokyo, Japan) and equilibrated with acetone (100%). Active PS32 (3.8 g) was injected into HPLC and eluted at 1mL/min (flow rate) and UV was determined out at 294 nm. PS321 and PS322 were obtained and bioassayed at 5.0 mg/disc. The PS321 fraction showed the strongest activity against six foodborne bacteria at 5.0 mg/disc. Finally, PS321 (3.5 g, yield 68.9%), was isolated by prep HPLC.

The PS321 structure was demonstrated by spectroscopic techniques. 1H- and 13C-NMR spectra were studied using a JNM-ECA600 spectrometer (JEOL Ltd., Tokyo, Japan) instrument with CHCl$_3$ as the solvent and C$_4$H$_{12}$Si as the internal standard. The UV-visible light absorption spectrum was also obtained with CHCl$_3$ using a UV spectrometer (DR/4000 spectrophotometer, HACH, Seoul, Korea). In addition, EI-MS was determined using a JEOL JMS-DX 30 mass spectrometer.

Bacterial culture Six foodborne bacteria were tested in this study, including three Gram-positive bacteria: *Staphylococcus aureus* ATCC 25923, *Listeria monocytogenes* ATCC 15313, and *Staphylococcus intermedius* ATCC 29663; three Gram-negative bacteria: *Shigella sonnei* ATCC 25931, *Salmonella typhimurium* IFO 14193, and *Shigella flexneri* ATCC 29903. The pure bacterial strains were obtained from the Korean Culture Center of
Microorganisms (Seoul, Korea). All bacteria were grown aerobically at 37°C in nutrient broth (NB; Difco, USA) while *S. aureus* were grown in Tryptic Soy broth (TSB; Difco, USA).

Disc diffusion Antimicrobial activity of *P. sepium* oil, 4-hydroxysalicylaldehyde and its derivatives were determined via disc diffusion method, as suggested by Kim *et al.* [14], against six foodborne bacteria. First, the bacterial suspensions were cultured in NB and then diluted to a turbidity adjusted to that of 0.5 McFarland (containing approximately 1.0×10^7 CFU/mL). The Muller Hinton agar (MHA; Difco, USA) plate was inoculated with bacterial suspensions (100 μL) containing 10^7 CFU/mL. The sterilized paper discs were soaked with 40 μL of each dilution (*P. sepium* oil, 4-hydroxysalicylaldehyde and its derivatives) (20 to 0.125 mg/disc) and placed on each MHA plate [15]. Methanol as negative control was also injected into the discs. The plates were left in an incubator at 37°C for 24 h. Analytical experiments were conducted in triplicate.

Minimum inhibitory concentrations Antimicrobial activities of 4-hydroxysalicylaldehyde and its derivatives were investigated via the minimum inhibitory concentration (MIC) using the broth dilution method. The MIC test was conducted by dissolving *P. sepium* oil, 4-hydroxysalicylaldehyde and its derivative (10 mg) and serially diluted two-fold in methanol (10 mL) in order to obtain 100 to 1 μg/mL concentrations; 100 μL of Muller Hinton broth (MHB) containing tested samples (50 μL) was dispensed into a 96-well microtiter plates using a micro-pipette followed by the addition of 50 μL bacterial suspension (10^7 CFU/mL). All plates without tested samples were used as a control. After all plates were incubated at 37°C for 24 h, the MIC values were determined based on turbidity at 600 nm.

Results and discussion

Antimicrobial activity of the oil extracted from *P. sepium* roots was evaluated via the disc diffusion method (Table 1). Measurements of inhibition zone values of the extracted oil of *P. sepium* roots showed potent antimicrobial activities against *S. aureus, L. monocytogenes, S.*
sonnei, and S. typhimurium. By contrast, the essential oil of P. serpium was less active against S. intermedius and S. flexneri. The negative control lacked antimicrobial activity against the microorganisms tested. Wang et al. [16] reported that the P. sepium oil showed antimicrobial and antioxidant activities against a wide range of bacterial strains. In addition, P. sepium also exhibited insecticidal [12, 17] and acaricidal activities [18]. In addition, similar studies have been demonstrated for species such as Periploca laevigata [19].

The antimicrobial compound was isolated by bioassay-guided separation and identified spectroscopically. Spectroscopic analysis verified PS321 as 4-methoxysalicylaldehyde (Table 2) (Fig. 1). Spectroscopic data for 4-methoxysalicylaldehyde (4-methoxy-2-hydroxybenzaldehyde) (C₈H₈O₃, molecular weight 151.0) were as follows: EI-MS (70 eV) m/z M⁺ 151, 134, 108, 95, 69, 53, 32; ¹H NMR (CD₃OD, 600 MHz) δ 11.42 (1H, t, J = 7.2 Hz), 7.30 (1H, t, J = 10.1 Hz), 6.47 (1H, t, J = 0.9 Hz), 6.38 (1H, t, J = 8.1 Hz), 4.60 (1H, s), 3.80 (1H, m, J = 14.5 Hz); and ¹³C NMR (CDCl₃, 150 MHz) δ 194.5 (CH), 166.9 (C-O), 164.9 (C-OH), 135.3 (CH), 115.2 (C), 108.5 (CH), 100.7 (CH), 55.7 (CH₃). Antimicrobial effects of the oil derived from P. sepium roots depend on the presence of high content of 4-methoxysalicylaldehyde [16]. Analytical data of 4-methoxysalicylaldehyde were consistent with reported studies [12, 16, 20]. Decalepis arayalpathra, Decalepis hamiltonii, and Hemidesmus indicus roots contain 4-methoxysalicylaldehyde [21, 22], which has been widely utilized in soft drinks and bakery products as a flavoring agent and for extending the shelf-life of food [16, 23].

To investigate the structure-activity relationships of 4-methoxysalicylaldehyde and its derivatives, 4-hydroxysalicylaldehyde, salicylaldehyde, 3-methoxysalicylaldehyde, 5-methoxysalicylaldehyde, 3-methylsalicylaldehyde, and 5-methylsalicylaldehyde were selected (Fig. 1). Antimicrobial activities of 4-methoxysalicylaldehyde and its analogues were examined against six foodborne bacteria via disc diffusion (Table 3). Among compounds with methoxy group in the C-4 position of the salicylaldehyde, 4-
methoxysalicylaldehyde exhibited strong-to-moderate antimicrobial activities against six foodborne bacteria at 2.0 to 1.0 mg/disc. However, 4-methoxysalicylaldehyde exhibited weak or no antimicrobial activity against the microorganisms tested at 0.5 mg/disc. Similarly, among compounds with methoxy group in the C-5 position of the salicylaldehyde, 5-methoxysalicylaldehyde showed strong-to-weak antimicrobial activities against all the tested bacteria at 2.0 mg/disc. In contrast, 3-methoxysalicylaldehyde, which carries a methoxy group in the C-3 position of the salicylaldehyde, did not show antimicrobial activity against six foodborne bacteria. In this regard, the altered position of methoxy group on salicylaldehyde appeared to affect the antimicrobial activities against six foodborne bacteria.

At a dose of 2.0 to 1.0 mg/disc, 4-hydroxysalicylaldehyde, which has a salicylaldehyde conjugated with the hydroxy group in the C-4 position, also demonstrated enormous antimicrobial activity against six foodborne bacteria. Especially, *S. aureus* was the most susceptible to 4-hydroxysalicylaldehyde at 0.125 mg/disc. The difference between 4-hydroxysalicylaldehyde and others relates to a single additional hydroxyl group in the position of salicylaldehyde. Studies demonstrated that the addition of an extra hydroxyl group in the benzaldehyde derivatives resulted in enhanced antimicrobial activity [2, 24]. The observations were similar to a previous study conducted by Stojković et al., [25] who reported that caffeic acid containing two hydroxyl groups exhibited a higher antimicrobial activity than *p*-coumaric acid, containing a single hydroxyl group. Salicylaldehyde displayed limited antimicrobial activity against *S. typhimurium, S. aureus, L. monocytogenes*, and *S. flexneri* except for *S. intermedius* and *S. sonnei*. However, 3-methylsalicylaldehyde and 5-methylsalicylaldehyde, which contain a methyl group in the C-3 and C-5 positions of the salicylaldehyde, showed no antimicrobial activities against six foodborne bacteria at exposure levels of 2.0 mg/disc.

The MIC values of 4-methoxysalicylaldehyde and its derivatives required for inhibitory activity against six foodborne bacteria are listed in Table 4. In addition, not only 4-
methoxysalicylaldehyde (MIC 30.1-67.3 μg/mL) but also 4-hydroxysalicylaldehyde (MIC 41.1-61.5 μg/mL) inhibited the growth of six foodborne bacteria. 5-Methoxysalicylaldehyde showed a moderate inhibitory activity (MIC 41.3-92.1 μg/mL), whereas salicylaldehyde exhibited inhibitory activity (MIC 62.8-81.5 μg/mL) against all the tested microorganisms except for *S. intermedius* and *S. sonnei*. However, 3-methoxysalicylaldehyde, 3-methylsalicylaldehyde, and 5-methylsalicylaldehyde did not show inhibitory effects against six foodborne bacteria. Several studies suggested that structural features of a compound determined the differences in their antimicrobial effects [2, 4, 26, 27].

The utilization of natural products may enhance food safety and reduce microbial contamination in many foods. In conclusion, our study showed the possibility of pathogen reduction in foods using natural food preservatives containing 4-methoxysalicylaldehyde and its derivatives. Furthermore, this study elucidated the structural properties of compounds derived from essential oil of *P. sepium* manifesting antibacterial activity.
References

Acknowledgments This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2016R1A2A2A05918651).

Figure legend

Fig. 1 Structures of 4-methoxysalicylaldehyde analogues

Table legends

Table 1 Antimicrobial activities of essential oil of P. sepium seeds against foodborne bacteria

Table 2 1H NMR, 13C NMR, and DEPT spectral data of PS321

Table 3 Antimicrobial activities of 4-methoxysalicylaldehyde and its derivatives against foodborne bacteria

Table 4 Minimum inhibition concentration (MIC) values of 4-methoxysalicylaldehyde and its derivatives against foodborne bacteria
Fig. 1 Structures of 4-methoxysalicylaldehyde analogues

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Methoxysalicylaldehyde</td>
<td>R<sub>1</sub></td>
</tr>
<tr>
<td>4-Hydroxysalicylaldehyde</td>
<td>H</td>
</tr>
<tr>
<td>Salicylaldehyde</td>
<td>H</td>
</tr>
<tr>
<td>3-Methoxysalicylaldehyde</td>
<td>CH<sub>3</sub>O</td>
</tr>
<tr>
<td>5-Methoxysalicylaldehyde</td>
<td>H</td>
</tr>
<tr>
<td>3-Methylsalicylaldehyde</td>
<td>CH<sub>3</sub></td>
</tr>
<tr>
<td>5-Methylsalicylaldehyde</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 1 Antimicrobial activities of essential oil of *P. sepium* seeds against foodborne bacteria

<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc. (mg/disc)</th>
<th>Gram positive bacteria</th>
<th>Gram negative bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L. monocytogenes</td>
<td>S. aureus</td>
</tr>
<tr>
<td>P. sepium oil</td>
<td>20</td>
<td>++++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Negative control (Only solvent)</td>
<td>20</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

a Cultured on Mueller Hinton agar at 37°C for 24 h in an incubator

b Diameter of inhibition zone >30 mm; ++++; 21~30 mm, +++; 16~20 mm, ++; 10~15 mm, +; and <10 mm, –
Table 2 1H NMR, 13C NMR, and DEPT spectral dataa of PS321

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Partial structure</th>
<th>δ_C (ppm)</th>
<th>δ_H (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH</td>
<td>194.5</td>
<td>11.42 (1H, b, $J = 7.2$ Hz)</td>
</tr>
<tr>
<td>2</td>
<td>C-O</td>
<td>166.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C-OH</td>
<td>164.9</td>
<td>4.60 (1H, s)</td>
</tr>
<tr>
<td>4</td>
<td>CH</td>
<td>135.3</td>
<td>7.30 (1H, t, $J = 10.1$ Hz)</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>115.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CH</td>
<td>108.5</td>
<td>6.47 (1H, t, $J = 0.9$ Hz)</td>
</tr>
<tr>
<td>7</td>
<td>CH</td>
<td>100.7</td>
<td>6.38 (1H, t, $J = 8.1$ Hz)</td>
</tr>
<tr>
<td>8</td>
<td>CH$_3$</td>
<td>55.7</td>
<td>3.80 (1H, m, $J = 14.5$ Hz)</td>
</tr>
</tbody>
</table>

a 1H NMR (600 MHz), 13C NMR and DEPT (150 MHz), TMS, δ ppm, J in Hz

b s: singlet, d: doublet, t: triplet, m: multiplet
Table 3: Antimicrobial activities of 4-methoxysalicylaldehyde and its derivatives against foodborne bacteria

<table>
<thead>
<tr>
<th>Compound</th>
<th>Conc. (mg/disc)</th>
<th>Gram positive bacteria</th>
<th>Gram negative bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L. monocytogenes</td>
<td>S. aureus</td>
</tr>
<tr>
<td>4-Methoxysalicylaldehyde</td>
<td>2.0</td>
<td>+++b</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4-Hydroxysalicylaldehyde</td>
<td>2.0</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Salicylaldehyde</td>
<td>2.0</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>3-Methoxysalicylaldehyde</td>
<td>2.0</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>5-Methoxysalicylaldehyde</td>
<td>1.0</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>3-Methylsalicylaldehyde</td>
<td>2.0</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>5-Methylsalicylaldehyde</td>
<td>2.0</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

* Cultured on Mueller Hinton agar at 37°C for 24 h in an incubator.

b Diameter of inhibition zone >30 mm, +++; 21~30 mm, +++; 16~20 mm, ++; 10~15 mm, +; and <10 mm, −
<table>
<thead>
<tr>
<th>Compound</th>
<th>MIC (μg/mL)<sup>b</sup></th>
<th>Gram positive bacteria</th>
<th>Gram negative bacteria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L. monocytogenes</td>
<td>S. aureus</td>
<td>S. intermedius</td>
</tr>
<tr>
<td>4-Methoxysalicylaldehyde</td>
<td>41.7</td>
<td>51.9</td>
<td>67.3</td>
<td>30.1</td>
</tr>
<tr>
<td>4-Hydroxysalicylaldehyde</td>
<td>61.5</td>
<td>44.3</td>
<td>47.2</td>
<td>41.1</td>
</tr>
<tr>
<td>Salicylaldehyde</td>
<td>62.8</td>
<td>81.5</td>
<td>100<<</td>
<td>78.8</td>
</tr>
<tr>
<td>3-Methoxysalicylaldehyde</td>
<td>100<<</td>
<td>100<<</td>
<td>100<<</td>
<td>100<</td>
</tr>
<tr>
<td>5-Methoxysalicylaldehyde</td>
<td>92.1</td>
<td>70.0</td>
<td>80.7</td>
<td>48.5</td>
</tr>
<tr>
<td>3-Methylsalicylaldehyde</td>
<td>100<<</td>
<td>100<<</td>
<td>100<<</td>
<td>100<</td>
</tr>
<tr>
<td>5-Methylsalicylaldehyde</td>
<td>100<<</td>
<td>100<<</td>
<td>100<<</td>
<td>100<</td>
</tr>
</tbody>
</table>

^a Cultured on Mueller Hinton broth at 37°C for 24 h in an incubator

^b MIC values <100 μg/mL
Applied Biological Chemistry
Editor-in-Chief: Lee, H.-S.
ISSN: 2468-0834 (print version)
ISSN: 2468-0842 (electronic version)
Journal no. 13765