Extended! eBooks from the 'Springer Archives' only $/€/£ 8.99 each–save now!

Design of Contemporary Inland Waterway Vessels

The Case of the Danube River

Authors: Radojčić, D., Simić, A., Momčilović, N., Motok, M., Friedhoff, B.

Free Preview
  • The book focuses exclusively on inland waterway vessels
  • Presents mathematical models for the first time
  • Gives the latest greening innovations in prime movers and fuels
  • Discusses Energy Efficiency Design Indexes (EEDI) and economic indicators for IW vessels
  • Provides worked examples for self propelled vessel and pushed convoys
see more benefits

Buy this book

eBook $119.00
price for Brazil
  • ISBN 978-3-030-77325-0
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $159.99
price for Brazil
  • ISBN 978-3-030-77324-3
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • Usually ready to be dispatched within 3 to 5 business days, if in stock
About this book

Inland Waterway (IW), or river vessels are in every respect different from the seagoing ships. The professional literature is mostly focused on conventional seagoing fleets, leaving a gap in the documentation of design practices for IW vessels. The principal attribute that differentiates river vessels from the seagoing ships is the low, or shallow, draught due to water depth restrictions.

This book addresses key aspects for the design of contemporary, shallow draught IW vessels for the transport of dry cargo (containers and bulk cargo). Most of the logic that is presented is applicable to the design of river vessels for any river, but the material that is presented is focused on vessels for the River Danube and its tributaries.

The term ‘contemporary river vessel’ assumes that the present-day technology and current Danube river infrastructure are taken into consideration in its design. It is believed that the technologies and concepts that are proposed here are applicable for all new vessel designs for the next 10 to 15 years. Other innovative technologies should be considered for designs beyond that horizon. Moreover, nowadays contemporary IW vessel must be in harmony with the Environmentally Sustainable Transport (EST) policies and hence special attention is paid to both ecology and efficiency. Note however that shipowners and ship operators usually tend to choose the conventional cost-effective transport technologies. Given that potential divergence of interests, the concepts and technologies treated here may be regarded as innovative.

About the authors


Professor Dejan Radojčić is Naval Architect with 40 years of academic and industrial experience, covering research focused on ship design and hydrodynamics. Academic experience (1979-2014) is rising from teaching assistant to Full Professor and Head of the Department of Naval Architecture at the Faculty of Mechanical Engineering, University of Belgrade. He participated in a series of international (EU) and domestic projects on ship design, ship hydrodynamics, shallow draught vessels, optimization of propulsion systems, etc. Professor Radojčić published a number of often-cited scientific papers and co-authored books “Resistance and Propulsion of High-Speed Ships in Shallow Water” (1997, in Serbian) and “Power Prediction Modeling of Conventional High-Speed Craft” (Springer, 2019). As a member of a research team, D. Radojčić received in 2015 SNAME’s The Vice Admiral E.L.Cochrane Award for best peer-reviewed paper published by SNAME. He was a former president of SNAS (Society of Naval Architects of Serbia), member of RINA and SNAME.

Aleksandar Simić, PhD, is an Assistant Professor at the Department of Naval Architecture, Faculty of Mechanical Engineering, University of Belgrade. He is a Naval Architect with 20 years of experience in research, design, and teaching, primarily in hydrodynamics of conventional and unconventional vessels. He was involved in several national and EU-funded research and innovation projects related to the development of next-generation European inland waterway vessels. The energy efficiency of inland waterway self-propelled cargo ships is the focus of his PhD thesis. In recognition of his work, as a member of the research team, he received in 2015 SNAME’s The Vice Admiral E.L.Cochrane Award for best peer-reviewed paper published by SNAME. He is a member of SNAS (Society of Naval Architects of Serbia), RINA, and SNAME.

Nikola Momčilović, PhD, is an Assistant Professor at the Department of Naval Architecture, Faculty of Mechanical Engineering, University of Belgrade. He is a Naval Architect with more than 14 years of experience in teaching and research. Research fields are based on ship structural design and analyses, particularly: finite element method, longitudinal strength, reliability analysis, hull weight estimations, the strength of material, etc. Momčilović was also engaged in various industrial and research projects related to ship design. He is a member of SNAS (Society of Naval Architects of Serbia) and RINA.

Professor Milorad Motok graduated from the Department of Naval Architecture at the Faculty of Mechanical engineering in Belgrade in 1981. He started working in the same department as Teaching Assistant and obtained his Ph. D. diploma in Technical Science in 1995; promoted to Full Professor in 2007, holding courses on ship strength and ship structures. From the year 2012, he is Head of the department. His fields of professional interest are as follows: analytical and numerical methods in ship strength analyses, structural analyses using FEM, wave-induced loads on ships, and ship vibrations. Professor Motok published papers in respected scientific journals. He is President of SNAS - Society of Naval Architects of Serbia and Fellow Member of The Royal Institution of Naval Architects.

Benjamin Friedhoff studied naval architecture at the University of Duisburg-Essen, where he subsequently worked for three years as a researcher. In 2008 he changed to the Development Centre for Ship Technology and Transport Systems - DST, where he worked on a wide range of research topics in the fields of hydrodynamics and renewable energies. Since 2014 he is head of the Hydrodynamics Department and has worked on various greening projects, including alternative energy carriers and zero-emission ships. As part of the restructuring of the DST, the department was renamed "Experiments, Fleet Modernization and Emissions" in January 2020 to take due account of current societal challenges. Besides other work in projects and committees, he is a member of the Green Shipping Expert Group (GSEG) providing recommendations to the European Commission regarding the pathways towards zero-emission waterborne transport, in terms of defining R&I priorities, necessary policies, regulations as well as investment priorities.

Table of contents (11 chapters)

Table of contents (11 chapters)

Buy this book

eBook $119.00
price for Brazil
  • ISBN 978-3-030-77325-0
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $159.99
price for Brazil
  • ISBN 978-3-030-77324-3
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • Usually ready to be dispatched within 3 to 5 business days, if in stock
Loading...

Services for this Book

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Design of Contemporary Inland Waterway Vessels
Book Subtitle
The Case of the Danube River
Authors
Copyright
2021
Publisher
Springer International Publishing
Copyright Holder
The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
eBook ISBN
978-3-030-77325-0
DOI
10.1007/978-3-030-77325-0
Hardcover ISBN
978-3-030-77324-3
Edition Number
1
Number of Pages
XXIII, 337
Number of Illustrations
158 b/w illustrations, 119 illustrations in colour
Topics