Skip to main content

Mathematical Topics on Modelling Complex Systems

In Memory of Professor Valentin Afraimovich

  • Book
  • © 2022

Overview

  • Represents the new step into our understanding of complexity science
  • Develops the corresponding mathematical theory to apply nonlinear design to practical engineering
  • Covers physical problems and mathematical modeling

Part of the book series: Nonlinear Physical Science (NPS)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 16.99 USD 84.99
Discount applied Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

Keywords

About this book

This book explores recent developments in theoretical research and mathematical modelling of real-world complex systems, organized in four parts.

 

The first part of the book is devoted to the mathematical tools for the design and analysis in engineering and social science study cases. We discuss the periodic evolutions in nonlinear chemical processes, vibro-compact systems and their behaviour, different types of metal–semiconductor self-assembled samples, made of silver nanowires and zinc oxide nanorods.

The second part of the book is devoted to mathematical description and modelling of the critical events, climate change and robust emergency scales. In three chapters, we consider a climate-economy model with endogenous carbon intensity and the behaviour of Tehran Stock Exchange market under international sanctions.

The third part of the book is devoted to fractional dynamic and fractional control problems. We discuss the novel operational matrix technique for variable-order fractional optimal control problems, the nonlinear variable-order time fractional convection–diffusion equation with generalized polynomials

The fourth part of the book concerns solvability and inverse problems in differential and integro-differential equations.

The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering. It can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists and urban planners.





Editors and Affiliations

  • ISEP-Institute of Engineering, Polytechnic Institute of Porto, Porto, Portugal

    J. A. Tenreiro Machado

  • Department of Mathematics and Statistics, Texas Tech University, Lubbock, USA

    Dimitri Volchenkov

About the editors

Dr. J.A. Tenreiro Machado was born at 1957. He graduated with ‘Licenciatura’ (1980), Ph.D. (1989) and ‘Habilitation’ (1995), in Electrical and Computer Engineering at the University of Porto. During 1980–1998, he worked at the Dept. of Electrical and Computer Engineering of the University of Porto. Since 1998, he works at the Institute of Engineering, Polytechnic Institute of Porto, Dept. of Electrical Engineering. His research interests are complex systems, nonlinear dynamics, fractional calculus, modelling, control, entropy, evolutionary computing, genomics, robotics and intelligent transportation systems.

 

Dr. Dimitri Volchenkov obtained his Ph.D. in Theoretical Physics in the Saint Petersburg State University (Russia) and habilitated in the CNRS Centre de Physique Theorique (Marseille, France). He is Associate Professor of Mathematics and Statistics at the Texas Tech University (USA) and Professor Risk Assessment and Data Science at the Sichuan University of Science and Engineering (China). His research interests are the science of complexity and interdisciplinary physics ranging from the stochastic nonlinear dynamics to plasma turbulence, to urban spatial networks, and their impact on poverty and environments, analysis of complex networks, data analysis of economic, inequality and politics data, big data analytics, survival analysis, modelling of evolutionary biology and ecology.

Bibliographic Information

Publish with us