Skip to main content

Mathematical Logic

On Numbers, Sets, Structures, and Symmetry

  • Textbook
  • © 2024
  • Latest edition

Overview

  • New edition includes countable categoricity, analyzed using examples from the first two parts of the book
  • Presents an introduction to formal mathematical logic and set theory
  • Presents simple yet nontrivial results in modern model theory

Part of the book series: Springer Graduate Texts in Philosophy (SGTP, volume 4)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (20 chapters)

  1. Logic, Sets, and Numbers

  2. Relations, Structures, Geometry

  3. Inference, Models, Categoricity and Diversity

Keywords

About this book

This textbook is a second edition of the successful, Mathematical Logic: On Numbers, Sets, Structures, and Symmetry. It retains the original two parts found in the first edition, while presenting new material in the form of an added third part to the textbook. The textbook offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions.

Part I, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are usedto study and classify mathematical structures. The added Part III to the book is closer to what one finds in standard introductory mathematical textbooks. Definitions, theorems, and proofs that are introduced are still preceded by remarks that motivate the material, but the exposition is more formal, and includes more advanced topics. The focus is on the notion of countable categoricity, which analyzed in detail using examples from the first two parts of the book. This textbook is suitable for graduate students in mathematical logic and set theory and will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background. 


Authors and Affiliations

  • Mathematics, City University of New York, New York, USA

    Roman Kossak

About the author

Roman Kossak is a Professor of Mathematics at the City University of New York. He does research in model theory of formal arithmetic. He has published 38 research papers and co-authored a monograph on the subject for the Oxford Logic Guides series. His other interests include philosophy of mathematics, phenomenology of perception, and interactions between mathematics philosophy and the arts.



Bibliographic Information

Publish with us