Skip to main content

New Frontiers in Textual Data Analysis

  • Conference proceedings
  • © 2024

Overview

  • Presents modern statistical analysis methods for textual data
  • Showcases applications in sociology, psychology, politics, business and economics
  • Adopts a multidisciplinary approach to textual data analysis

Included in the following conference series:

Conference proceedings info: JADT 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 149.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This volume presents a selection of articles which explore methodological and applicative aspects of textual data analysis. Divided into four parts, it begins by focusing on statistical methods, and then moves on to problems in quantitative language processing. After discussing the challenging task of text mining in relation to emotional and sentiment analyses, the book concludes with a collection of studies in the social sciences and public health which apply textual data analysis methods.

The refereed contributions were originally presented at the 16th International Conference on Statistical Analysis of Textual Data (JADT 2022), which took place in Naples, Italy, on July 6-8, 2022. The biennial JADT meeting discusses theories, problems, and practical uses of textual data analysis in various fields, sharing a quantitative approach to the study of lexical, textual, pragmatic or discursive features of information expressed in natural language.

Similar content being viewed by others

Table of contents (31 papers)

  1. Statistical Methods for Textual Data Analysis

  2. Advances in Language Processing

  3. Emotional and Sentiment Analyses

Other volumes

  1. New Frontiers in Textual Data Analysis

Editors and Affiliations

  • Department of Political and Social Studies, University of Salerno, Fisciano, Italy

    Giuseppe Giordano

  • Department of Business Administration and Law, University of Calabria, Rende, Italy

    Michelangelo Misuraca

About the editors

Giuseppe Giordano is an Associate Professor of Statistics at the Department of Political and Social Studies, University of Salerno, Italy. He teaches Statistics and Analytics for the Social Sciences. His research interests are mainly in Multidimensional Data Analysis, Social Network Analysis, and Analysis of Complex Data Structures with a focus on real problems emerging in several applicative fields.

Michelangelo Misuraca is an Associate Professor of Statistics for Social Sciences at the Department of Business Administration and Law, University of Calabria, Italy. He teaches Statistics for Social Sciences and Textual Statistics at the University of Calabria and at the University of Naples Federico II. He is a fellow of the Italian Statistical Society (SIS) and of the Royal Statistical Society (RSS). His primary research interests are in the domain of Text Mining and Social Media Mining

Accessibility Information

PDF accessibility summary

This PDF does not fully comply with PDF/UA standards, but does feature limited screen reader support, described non-text content (images, graphs), bookmarks for easy navigation and searchable, selectable text. Users of assistive technologies may experience difficulty navigating or interpreting content in this document. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com.

EPUB accessibility summary

This ebook is designed with accessibility in mind, aiming to meet the ePub Accessibility 1.0 AA and WCAG 2.0 Level AA standards. Its features include described images and other non-text content, screenreader-friendly navigation and accessible math. Math is represented either as MathML, LaTeX or in images. If math is represented as image, Alt Text might not be present. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com.

Bibliographic Information

Keywords

Publish with us