Skip to main content

Lectures on Advanced Topics in Categorical Data Analysis

  • Textbook
  • © 2024

Overview

  • Critically reviews the use of directed graphical models to study causality, explicit formulation of the conditions
  • Includes methods for coordinate-free analysis of multivariate categorical data, as well as relational models
  • Presents mathematically rigorous fundamentals of the theory of marginal models, emphasizing structure over stochastic

Part of the book series: Springer Texts in Statistics (STS)

  • 5170 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book continues the mission of the previous text by the author, Lectures on Categorical Data Analysis, by expanding on the introductory concepts from that volume and providing a mathematically rigorous presentation of advanced topics and current research in statistical techniques which can be applied in the social, political, behavioral, and life sciences. It presents an intuitive and unified discussion of an array of themes in categorical data analysis, and the emphasis on structure over stochastics renders many of the methods applicable in machine learning environments and for the analysis of big data.

The book focuses on graphical models, their application in causal analysis, the analytical properties of parameterizations of multivariate discrete distributions, marginal models, and coordinate-free relational models. To guide the readers in future research, the volume provides references to original papers and also offers detailed proofs of most of the significant results. Like the previous volume, it features exercises and research questions, making it appropriate for graduate students, as well as for active researchers.

 

Similar content being viewed by others

Keywords

Table of contents (11 chapters)

Authors and Affiliations

  • Budapest, Hungary

    Tamás Rudas

About the author

Tamás Rudas is Professor Emeritus in the Department of Statistics of the Faculty of Social Sciences, Eötvös Loránd University, Budapest. He is also an Affiliate Professor in the Department of Statistics, University of Washington, Seattle. He is a Fellow of the European Academy of Sociology and a former President of the European Association of Methodology. He was Founding Dean of the Faculty of Social Sciences of the Eötvös Loránd University and has held visiting positions in several statistics departments in the US and Europe. Dr. Rudas' publications include Lectures on Categorical Data Analysis (Springer 2018). His research deals with methods for the analysis of categorical data, including generalizations of the log-linear model like marginal and relational models, the assessment of model fit, and topics in survey statistics.

Accessibility Information

PDF accessibility summary

This PDF does not fully comply with PDF/UA standards, but does feature limited screen reader support, described non-text content (images, graphs), bookmarks for easy navigation and searchable, selectable text. Users of assistive technologies may experience difficulty navigating or interpreting content in this document. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com.

EPUB accessibility summary

This ebook is designed with accessibility in mind, aiming to meet the ePub Accessibility 1.0 AA and WCAG 2.0 Level AA standards. Its features include described images and other non-text content, screenreader-friendly navigation and accessible math. Math is represented either as MathML, LaTeX or in images. If math is represented as image, Alt Text might not be present. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com.

Bibliographic Information

Publish with us