Skip to main content

Theory of Disordered Solids

From Atomistic Dynamics to Mechanical, Vibrational, and Thermal Properties

  • Book
  • © 2023

Overview

  • Presents a mathematical theory of glasses, from atomic-level dynamics to experimentally testable physical properties
  • Introduces essential mathematical and numerical methods for describing physical phenomena in amorphous solids
  • Appeals to those working on molecular dynamics and coarse-grained simulations, as well as ab initio and DFT methods

Part of the book series: Lecture Notes in Physics (LNP, volume 1015)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This book presents a consistent mathematical theory of the non-electronic physical properties of disordered and amorphous solids, starting from the atomic-level dynamics and leading to experimentally verifiable descriptions of macroscopic properties such as elastic and viscoelastic moduli, plasticity, phonons and vibrational spectra, and thermal properties. This theory begins with the assumption of the undeniable existence of an “amorphous lattice”, which allows one to relegate the theoretical uncertainties about the ultimate nature of the glass transition to a subsidiary role and thus take a more pragmatic approach towards the modelling of physical properties. 

The book introduces the reader not only to the subtle physical concepts underlying the dynamics, mechanics, and statistical physics of glasses and amorphous solids, but also to the essential mathematical and numerical methods that cannot be readily gleaned from specialized literature since they are spread out among many often technically demanding papers. These methods are presented in this book in such a way as to be sufficiently general, allowing for the mathematical or numerical description of novel physical phenomena observed in many different types of amorphous solids (including soft and granular systems), regardless of the atomistic details and particular chemistry of the material.  

This monograph is aimed at researchers and graduate-level students in physics, materials science, physical chemistry and engineering working in the areas of amorphous materials, soft matter and granular systems, statistical physics, continuum mechanics, plasticity, and solid mechanics. It is also particularly well suited to those working on molecular dynamics simulations, molecular coarse-grained simulations, as well as ab initio atomistic and DFT methods for solid-state and materials science.



Authors and Affiliations

  • Dipartimento di Fisica, Universita' di Milano, Milano, Italy

    Alessio Zaccone

About the author

Alessio Zaccone (PhD ETH Zurich 2010) is a Full Professor of Theoretical Condensed Matter Physics at University of Milan. He has published over 140 peer-reviewed papers in different areas of physics, from statistical physics to soft matter and disordered systems, solid state and quantum physics (superconductivity), hydrodynamics, colloids and complex fluids, including 14 articles in Physical Review Letters, and 5 articles in PNAS. He developed several theories and mathematical models of the physical properties of amorphous solids, including structure & dynamics, atomic theories of elasticity and viscoelasticity, the vibrational spectrum and thermal and electrical/dielectric properties. Several of the developed models have been successfully tested by independent experimental groups on a variety of materials, such as polymer glasses, metallic glasses, jammed granular packings and colloidal nano-materials.

He held faculty positions at Technical University Munich, University of Cambridge and University of Milan. He received numerous awards including the 2020 Gauss Professorship of the Göttingen Academy of Sciences, the election to a Fellowship of Queens’ College Cambridge, and he has been listed among the Emerging Leaders 2020 in Physics by the Journal of Physics (IoP) and among the Class of 2017 Influential Researchers by the journal Industrial and Engineering Chemistry Research published by the American Chemical Society. In 2022 he received an ERC Consolidator grant from the European Union for fundamental research on amorphous materials.


Bibliographic Information

Publish with us